• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On computational complexity of computing polynomial invariants of links

Research Project

Project/Area Number 14580391
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 計算機科学
Research InstitutionNihon University

Principal Investigator

TANI Seiichi  Nihon University, College of Humanities and Sciences, Associate Professor, 文理学部, 助教授 (70266708)

Co-Investigator(Kenkyū-buntansha) YAKU Takeo  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (90102821)
TODA Seinosuke  Nihon University, College of Humanities and Sciences, Professor, 文理学部, 教授 (90172163)
YAMAMOTO Makoto  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (10158305)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2004: ¥600,000 (Direct Cost: ¥600,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2002: ¥1,400,000 (Direct Cost: ¥1,400,000)
Keywordscomputational topology / Jones polynomial / discrete algorithms / interactive proof system / knots / links / braid group / conjugacy problem / 2橋絡み目 / 閉3ブレイド絡み目 / PSPACE / ジョーンズ多項式の計算 / 3-closed braid 絡み / 多項式時間階層 / NP-完全 / 自明性判定問題
Research Abstract

We investigate computational complexity of computing polynomial invariants of links. We also investigate the computational complexity of the problem whether a knot is unknotting and the computational complexity of the computational complexity of the conjugacy problem for braids.
We give fast algorithms for computing Jones polynomials of 2-bridge links and closed 3-braid links from their Tait graphs. Given a Tait graph with n edges, these algorithms run with O(n) arithmetic operations of polynomials of degree O(n) namely in O(n^2log n) time, where n is the number of the crossings of the link diagram. We also give a fast algorithm for computing Jones polynomials of Montesinos links from lists of integer sequences. Given a list of integer sequences that represents a link diagram with $n$ crossings, this algorithm runs with O(n) operations of polynomials of degree O(n).
We construct an interactive proof system for the Knotting Problem, and prove that the problem is contained in IP. Consequently, the Unknotting Problem is contained in both AM and co-AM.
The conjugacy problem for the n-strand braids is the following decision problem : Given two braids V, W, determine whether there exists a braid C such that CV is equivalent to W C. We give a proof that the conjugacy problem for braids is in PSPACE.

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (16 results)

All 2005 2004 2003 2002 Other

All Journal Article (10 results) Publications (6 results)

  • [Journal Article] Unknotting is in AM ∩ co-AM2005

    • Author(s)
      M.Hara, M.Yamamoto, S.Tani
    • Journal Title

      Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithm

      Pages: 359-365

    • NAID

      110003178737

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Unknotting is in AM ∩ co-AM.2005

    • Author(s)
      M.Hara, M.Yamamoto, S.Tani
    • Journal Title

      Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithm

      Pages: 359-365

    • NAID

      110003178737

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Fast Algorithms for Computing Jones Polynomials of Certain Links2004

    • Author(s)
      M.Murakami, M.Hara, M.Yamamoto, S.Tani
    • Journal Title

      京都大学数理解析研究所講究録 1375

      Pages: 174-180

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] On Computational Complexity of the Conjugacy Problem for Braids2004

    • Author(s)
      M.Matsuba, S.Tani
    • Journal Title

      Technical Report of IEICE COMP-2003-88

      Pages: 17-23

    • NAID

      110003178825

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Fast Algorithms for Computing Jones Polynomials of Certain Links.2004

    • Author(s)
      M.Murakami, M.Kara, M.Yamamoto, S.Tani
    • Journal Title

      Research Institute for Mathematical Sciences Vol.1375

      Pages: 174-180

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On Computational Complexity of the Conjugacy Problem for Braids.2004

    • Author(s)
      M.Matsuba, S.Tani
    • Journal Title

      Technical Report of IEICE COMP-2003-88

      Pages: 17-23

    • NAID

      110003178825

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes2003

    • Author(s)
      M.Liskiewicz, M.Ogihara, S.Toda
    • Journal Title

      Theoretical Computer Science 304, 1-3

      Pages: 129-156

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] 学術論文関係情報のグラフ描画問題に基づく視覚化手法2003

    • Author(s)
      宮寺庸造, 田地晶, 及部佳代子, 横山節雄, 近谷英昭, 夜久竹夫
    • Journal Title

      電子情報通信学会論文誌 J87-D-I No.3

      Pages: 1-18

    • NAID

      110003171316

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] グラフ同型写像の数え上げ問題に対するアルゴリズムについて2002

    • Author(s)
      名古屋孝幸, 谷聖一, 戸田誠之助
    • Journal Title

      電子情報通信学会論文誌 J85-D-I No.5

      Pages: 424-435

    • NAID

      110003184771

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A Polynomial-Time Algorithms for Counting Graph Isomorphisms among Partial κ-Trees (in Japanese).2002

    • Author(s)
      T.Nagoya, S.Tani, S.Toda
    • Journal Title

      IEICE Transactions Vol.J85-D-I, No.5

      Pages: 424-435

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] M.Matsuba, S.Tani: "On Computational Complexity of the Conjugacy Problem for Braids"Technical Report of IEICE. CPMP-2003-88. 17-23 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] 原正雄, 谷聖一, 山本慎: "結び目の非自明性判定問題の計算量について"京都大学数理解析研究所講究録. 1323. 227-232 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Liskiewicz, M.Ogihara, S.Toda: "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes"Theoretical Computer Science. 304,1-3. 129-156 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 宮寺庸造, 田地晶, 及部佳代子, 横山節雄, 近谷英昭, 夜久竹夫: "学術論文関係情報のグラフ描画問題に基づく視覚化手法"電子情報通信学会論文誌, D-1. Vol.J87-D-I. 1-18 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 原正雄, 谷聖一, 山本慎: "Arborescent絡み目に対するジョーンズ多項式計算アルゴリズム"情報技術レターズ. vol.1. 16-17 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 名古屋孝幸, 谷聖一, 戸田誠之助: "グラフ同型写像の数え上げ問題に対するアルゴリズムについて"電子情報通信学会論文誌. J85-D-I, No.5. 424-435 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi