• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Dimensionality reduction and information extraction for pattern recognition

Research Project

Project/Area Number 14580405
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionSaitama University

Principal Investigator

HIRAOKA Kazuyuki  Saitama University, faculty of engineering, research associate, 工学部, 助手 (00312918)

Co-Investigator(Kenkyū-buntansha) MISHIMA Taketoshi  Saitama University, faculty of engineering, professor, 工学部, 教授 (30245310)
MIZOGUCHI Hiroshi  Tokyo Univ.of Science, dept.of mechanical engineering, professor, 理工学部, 教授 (00262113)
Project Period (FY) 2002 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2003: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2002: ¥900,000 (Direct Cost: ¥900,000)
Keywordsdimensionality reduction / information extraction / information representation / statistical pattern recognition / machine leanring / 学習
Research Abstract

Dimensionality Reduction
The present study considers dimensionality reduction methods as a preprocessing of pattern recognition. Though PCA(principal component analysis) is a most popular conventional method of dimensionality reduction, it has a drawback for our purpose because it does not use class informations which are attatched to training samples. On the other hand, another popular method LDA(linear discriminant analysis) uses class information. However, it has a restriction on the number of reduced dimension according to the number of classes. This restriction can cause excessive reduction. In order to overcome these problems, we have considered dimensionality reduction methods based on the difference between classes in the reduced data as a criterion for goodness ofreductions.
First, we have examined a method in which we measure the difference of distributions based on Kullback-Leibler information. This method uses class informations, and it does not have any restriction on the nu … More mber of reduced dimension. Through experiments with fimdamental tasks, we have observed that this method decreases the rate of wrong classifications compared with PCA and LDA for linear non-separatable tasks, and so on.
Two problems of this methods are (1)it uses fitting of multidimensional normal distributions, and (2)it needs iterative calculations in optimization. As for (2), we have proposed a method in which a linear transformation, that whitens only one class, is applied to the whole data and then PCA is performed. It does not need iterative calculations any more, whereas it has similar property to the previous method. On the other hand, as for (1), we improved our method with a virtual potential between different classes. The last methods realizes lower rate of wrong classifications than the previous methods for dimensionality reduction to particularity low dimensions.
Information Representation
For multi-labeled learning tasks, we have considered two ways of information representation, neural network method and and conditional distribution method, and their behaviors are invesitigated. Less

Report

(4 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • 2002 Annual Research Report
  • Research Products

    (21 results)

All 2004 2003 2002 Other

All Journal Article (10 results) Publications (11 results)

  • [Journal Article] Classification of Multi-Attributes via Mutual Suggestion among Classifiers2004

    • Author(s)
      HIRAOKA K., MISHIMA T.
    • Journal Title

      Proceedings of NCSP 2004

      Pages: 327-330

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] オンライン線形判別分析の収束性の改良2004

    • Author(s)
      中島佳奈子, 平岡和幸, 三島健稔
    • Journal Title

      電子情報通信学会2004年ソサイエティ大会講演論文集

      Pages: 31-31

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 複数の識別器を用いた多重属性の識別2004

    • Author(s)
      山田拓郎, 平岡和幸, 三島健稔
    • Journal Title

      電子情報通信学会2004年ソサイエティ大会講演論文集

      Pages: 26-26

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 判別のための次先圧縮と白色化パラメータについて2004

    • Author(s)
      金子直樹, 平岡和幸, 三島健稔
    • Journal Title

      電子情報通信学会2004年ソサイエティ大会講演論文集

      Pages: 27-27

    • Related Report
      2004 Annual Research Report
  • [Journal Article] コンテキスト依存型報酬モデルに対する強化学習2004

    • Author(s)
      金子祐紀, 平岡和幸, 三島健稔
    • Journal Title

      電子情報通信学会2004年ソサイエティ大会講演論文集

      Pages: 167-167

    • Related Report
      2004 Annual Research Report
  • [Journal Article] 距離評価に基づく認識のための次元圧縮2004

    • Author(s)
      佐藤美沙紀, 平岡和幸, 三島健稔
    • Journal Title

      情報処理学会 第67回全国大会講演論文集

    • NAID

      170000170262

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Dimensionality Reduction for Pattern Recognition Based on Potential Function2003

    • Author(s)
      SATO M., HIRAOKA K., et al.
    • Journal Title

      Proceedings of ITC-CSCC 2003

      Pages: 577-580

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Dimensionality Reduction for Pattern Recognition Based on Difference of Distribution among Classes2002

    • Author(s)
      NISHIMURA M., HIRAOKA K., et al.
    • Journal Title

      Proceedings of the ITC-CSCC 2002

      Pages: 1670-1673

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Classification of double attributes via mutual suggestion between a pair of classifiers2002

    • Author(s)
      HIRAOKA K, MISHIMA T.
    • Journal Title

      Proceedings of ICONIP 2002

      Pages: 1852-1856

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Classification of double attributes via mutual suggestion between a pair of classifiers2002

    • Author(s)
      HIRAOKA K., MISHIMA T.
    • Journal Title

      Proceedings of ICONIP 2002

      Pages: 1852-1856

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] 西村将臣, 平岡和幸, 他: "パターン認識の前処理としての次元圧縮法"日本機械学会ロボティクス・メカトロニクス講演会 '03 論文集. 2PI-3F-B8. 1-2 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Kaneko, K.Hiraoka, et al.: "Dimensionality reduction method for approximating the value function"Proc.2003 Intl.Tech.Conf. on Circuits/Systems and Communications. 1. 97-100 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Nishimura, Y.Watai, K.Hiraoka, et al.: "A preprocessing of principal component analysis for pattern classification"Proc.2003 Intl.Tech.Conf. on Circuits/Systems and Communications. 1. 589-592 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Sato, K.Hiraoka, et al.: "Dimensionality reduction for pattern recognition based on potential function"Proc.2003 Intl.Tech.Conf. on Circuits/Systems and Communications. 1. 577-580 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Hiraoka, T.Mishima: "Classification of multi-attributes via mutual suggestion among classifiers"Proc. of 2004 RISP Intl.Workshop on Nonlinear Circuits and Signal Processing. 1. 327-330 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] H.Azumi, K.Hiraoka, et al.: "Interpolation on data with multiple attributes by a neural network"Proc. ITC-CSCC 2002. 814-817 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] R.Kamioka, K.Kurata, K.Hiraoka, et al.: "Unsupervised Classification of Multiple Attributes via Autoassociative Neural Network"Proc. ITC-CSCC 2002. 798-801 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Hiraoka, et al.: "Complementary discriminant analysis for Classification of double Attributes"Proc. ITC-CSCC 2002. 806-809 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Nishimura, K.Hiraoka, et al.: "Dimensionality reduction for pattern recognition based on difference of distribution among classes"Proc. ITC-CSCC 2002. 1670-1673 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] K.Hiraoka, et al.: "Classification of double attributes via mutual suggestion between a pair of classifiers"Proc. ICONIP 2002. 1852-1856 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 日台 健一, 岡部 公輔, 溝口 博, 他: "オンライン線形判別分析に基づく適応的顔認識システムの構築"計測自動制御学会システムインテグレーション部門講演会. II. 157-158 (2002)

    • Related Report
      2002 Annual Research Report

URL: 

Published: 2002-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi