Budget Amount *help |
¥4,000,000 (Direct Cost: ¥4,000,000)
Fiscal Year 2003: ¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 2002: ¥2,200,000 (Direct Cost: ¥2,200,000)
|
Research Abstract |
宮川は外部領域の流れのパターンをその時間・空間減衰度との関係において研究し,ある種の直交変換群に関する対称性を持つ外部領域で,急速に減衰する対称解の一部を発見した.この種の解が表す流れでは,流れが物体に及ぼす抗力の総和がゼロになることが知られており,その意味で粘性流体の流れとしては特殊なものであるが,このような数学的結果を回避するために考案された非圧縮粘性流体の理論においても,やはりこういった解が実際に現れることは,興味深いことと思う.有限群の表現論を援用してこの結果をさらに一般な対称性を持つ場合に拡張し,可能ならば外部領域における対称解をすべて分類し,その時間・空間減衰度との関連を明らかにすること,またその安定性について考察すること,さらには,例えば半空間のような,外部領域とは異なる位相的性質を持つ非有界領域の場合にこの結果を拡張することが,次の課題である.外部領域においてはこの計画は現在進行中である.半空間の場合には一部結果が得られているが,まだ完全なものではない. 福本は渦管や渦糸の挙動と安定性を扱った.渦管については,その3次元の線形不安定性を,ハミルトン的スペクトル理論の立場から計算した.渦度分布が一様な円柱渦はその対称性により中立安定であるが,これに対称性を破る摂動を加えれば2個のKelvin波がパラメータ共鳴を起こして,渦管が不安定化する可能性があることを示した.また,楕円渦管の場合に,線形摂動を支配する作用素の固有値と固有関数を特殊関数を用いて精細に計算し,その結果,ある条件をみたす2個のKelvin波の衝突によって必ず共鳴不安定を起こすことを示した.また渦輪についても同種の解析を行い,同様の不安定化現象を発見し,それがすべて渦輪の伸張によるものであることを示した.
|