• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

指数定理と余随伴軌道に関する研究

Research Project

Project/Area Number 14J08233
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field Geometry
Research InstitutionThe University of Tokyo

Principal Investigator

森田 陽介  東京大学, 数理科学研究科, 特別研究員(DC1)

Project Period (FY) 2014-04-25 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2016: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2015: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2014: ¥1,000,000 (Direct Cost: ¥1,000,000)
KeywordsLie群 / 離散群 / 等質空間 / 不連続群 / Clifford-Klein形 / 不変式論 / Sullivan代数 / Lie環の相対コホモロジー / コホモロジー次元 / 局所的なモデル / 同変コホモロジー / 余随伴軌道 / 平坦束
Outline of Annual Research Achievements

等質空間上の不連続群の作用,等質空間を局所的なモデルとする多様体について研究を行った.
多様体 M が等質空間 G/H を局所的なモデルとするとき,対 (g, H) の(自明表現を係数とする)相対コホモロジーから M の de Rham コホモロジーへの自然な準同型が定まる.この準同型を調べることで,与えられた等質空間を局所的なモデルとするコンパクト多様体の存在に対する障害が得られることが,小林-小野(1990)などの研究によって分かっている.

本年度の研究で,小林(1989)の予想「rank G - rank K < rank H - rank K_H を満たす簡約型等質空間 G/H はコンパクトなClifford-Klein形を持たない」を肯定的に解決した.
以前の研究によって,簡約型等質空間 G/H を局所的なモデルとするコンパクト多様体が存在するためには,(g, H) の相対コホモロジーから (g, K_H) の相対コホモロジーへの自然な準同型が単射でなければならないことが分かっていた.本年度の研究では,この準同型が単射になるための簡単な必要十分条件を不変式論の言葉で与えた(証明には,Weil 代数の転入写像から定まる pure Sullivan 代数を用いて Lie 環の相対コホモロジーが具体的に計算できる,という H. Cartan, C. Chevalley, J.-L. Koszul, A. Weil らの結果を用いる).上述の予想はこれから簡単に従う.

Research Progress Status

28年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

28年度が最終年度であるため、記入しない。

Report

(3 results)
  • 2016 Annual Research Report
  • 2015 Annual Research Report
  • 2014 Annual Research Report
  • Research Products

    (24 results)

All 2017 2016 2015 2014

All Journal Article (5 results) (of which Peer Reviewed: 4 results,  Open Access: 3 results,  Acknowledgement Compliant: 3 results) Presentation (19 results) (of which Int'l Joint Research: 7 results,  Invited: 9 results)

  • [Journal Article] Homogeneous spaces of nonreductive type that do not model any compact manifold2017

    • Author(s)
      Yosuke Morita
    • Journal Title

      Publ. Res. Inst. Math. Sci.

      Volume: 印刷中

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] A cohomological obstruction to the existence of compact Clifford-Klein forms2017

    • Author(s)
      Yosuke Morita
    • Journal Title

      Selecta Math. (N.S.)

      Volume: 印刷中 Issue: 3 Pages: 1931-1953

    • DOI

      10.1007/s00029-016-0295-1

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] A topological necessary condition for the existence of compact Clifford-Klein forms2015

    • Author(s)
      Yosuke Morita
    • Journal Title

      J. Differential Geom.

      Volume: 100 Pages: 533-545

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Journal Article] Semisimple symmetric spaces without compact manifolds locally modelled thereon2015

    • Author(s)
      Yosuke Morita
    • Journal Title

      Proc. Japan Acad. Ser. A Math. Sci.

      Volume: 91 Issue: 2 Pages: 29-33

    • DOI

      10.3792/pjaa.91.29

    • Related Report
      2014 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 等質空間がコンパクト商を持つための位相的制約2014

    • Author(s)
      森田陽介
    • Journal Title

      京都大学数理解析研究所講究録

      Volume: 1925 Pages: 39-46

    • Related Report
      2014 Annual Research Report
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      森田陽介
    • Organizer
      2016年度表現論シンポジウム
    • Place of Presentation
      オキナワグランメールリゾート(沖縄県・沖縄市)
    • Year and Date
      2016-11-30
    • Related Report
      2016 Annual Research Report
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      Yosuke Morita
    • Organizer
      International Conference for the 70th Anniversary of Korean Mathematical Society (Session: Geometric Group Theory and Dynamics of Group Actions)
    • Place of Presentation
      Seoul National University(ソウル・韓国)
    • Year and Date
      2016-10-22
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      Yosuke Morita
    • Organizer
      Group Actions and Dynamics Seminar
    • Place of Presentation
      Yale University(ニューヘイブン・アメリカ合衆国)
    • Year and Date
      2016-09-12
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      森田陽介
    • Organizer
      第63回幾何学シンポジウム
    • Place of Presentation
      岡山大学(岡山県・岡山市)
    • Year and Date
      2016-08-27
    • Related Report
      2016 Annual Research Report
    • Invited
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      Yosuke Morita
    • Organizer
      Rigidity School, Nagoya 2016
    • Place of Presentation
      名古屋大学(愛知県・名古屋市)
    • Year and Date
      2016-07-26
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      Yosuke Morita
    • Organizer
      Geometry and Topology Seminar
    • Place of Presentation
      University of Luxembourg(ルクセンブルク・ルクセンブルク)
    • Year and Date
      2016-06-06
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      Yosuke Morita
    • Organizer
      Geometric Analysis on Discrete Groups
    • Place of Presentation
      京都大学(京都府・京都市)
    • Year and Date
      2016-05-30
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 等質空間を局所モデルとするコンパクト多様体が存在するための障害2016

    • Author(s)
      森田陽介
    • Organizer
      日本数学会2016年度年会
    • Place of Presentation
      筑波大学(茨城県・つくば市)
    • Year and Date
      2016-03-17
    • Related Report
      2015 Annual Research Report
  • [Presentation] A cohomological obstruction to the existence of compact Clifford-Klein forms2016

    • Author(s)
      Yosuke Morita
    • Organizer
      Berkeley-Tokyo Winter School “Geometry, Topology and Representation Theory”
    • Place of Presentation
      University of California, Berkeley(バークレー・アメリカ)
    • Year and Date
      2016-02-15
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] コンパクトClifford-Klein形の存在問題について2015

    • Author(s)
      森田陽介
    • Organizer
      2015年度表現論シンポジウム
    • Place of Presentation
      公共の宿 おおとり荘(静岡県・伊豆の国市)
    • Year and Date
      2015-11-18
    • Related Report
      2015 Annual Research Report
  • [Presentation] Homogeneous spaces locally modelling no compact manifold2015

    • Author(s)
      森田陽介
    • Organizer
      第15回関東若手幾何セミナー
    • Place of Presentation
      慶應義塾大学(神奈川県・横浜市)
    • Year and Date
      2015-10-03
    • Related Report
      2015 Annual Research Report
    • Invited
  • [Presentation] Cohomological obstructions to the existence of compact Clifford-Klein forms2015

    • Author(s)
      Yosuke Morita
    • Organizer
      Mathematical Symposium ENS Lyon-Todai
    • Place of Presentation
      ENS de Lyon(リヨン・フランス)
    • Year and Date
      2015-06-24
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 等質空間がコンパクト商を持つための位相的制約2015

    • Author(s)
      森田陽介
    • Organizer
      日本数学会2015年度年会
    • Place of Presentation
      明治大学(東京都千代田区)
    • Year and Date
      2015-03-23
    • Related Report
      2014 Annual Research Report
  • [Presentation] Volume forms and compact Clifford-Klein forms2015

    • Author(s)
      Yosuke Morita
    • Organizer
      ワークショップ「不連続群の変形とその周辺」
    • Place of Presentation
      名古屋大学(愛知県名古屋市)
    • Year and Date
      2015-02-17
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] A necessary condition for the existence of compact manifolds locally modelled on homogeneous spaces2015

    • Author(s)
      Yosuke Morita
    • Organizer
      2015 East Asian Core Doctorial Forum on Mathematics
    • Place of Presentation
      国立台湾大学(台湾・台北)
    • Year and Date
      2015-01-20
    • Related Report
      2014 Annual Research Report
  • [Presentation] 等質空間を局所モデルとするコンパクト多様体が存在するための障害2014

    • Author(s)
      森田陽介
    • Organizer
      広島大学トポロジー・幾何セミナー
    • Place of Presentation
      広島大学(広島県東広島市)
    • Year and Date
      2014-12-02
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] A necessary condition for the existence of compact manifolds locally modelled on homogeneous spaces2014

    • Author(s)
      Yosuke Morita
    • Organizer
      Rigidity School, Tokyo 2014 (2nd)
    • Place of Presentation
      東京大学(東京都目黒区)
    • Year and Date
      2014-11-22
    • Related Report
      2014 Annual Research Report
    • Invited
  • [Presentation] A necessary condition for the existence of compact manifolds locally modelled on homogeneous spaces,2014

    • Author(s)
      森田陽介
    • Organizer
      第61回幾何学シンポジウム
    • Place of Presentation
      名城大学(愛知県名古屋市)
    • Year and Date
      2014-08-26
    • Related Report
      2014 Annual Research Report
  • [Presentation] 等質空間がコンパクト商を持つための位相的制約2014

    • Author(s)
      森田陽介
    • Organizer
      表現論と調和解析の新たな進展
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2014-06-25
    • Related Report
      2014 Annual Research Report

URL: 

Published: 2015-01-22   Modified: 2024-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi