Project/Area Number |
15300098
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Bioinformatics/Life informatics
|
Research Institution | Hokkaido University |
Principal Investigator |
UEDA Tetsuo (2004-2006) Hokkaido University, Research Institute for Electronic Science., Professor, 電子科学研究所, 教授 (20113524)
中垣 俊之 (2003) 北海道大学, 電子科学研究所, 助教授 (70300887)
|
Co-Investigator(Kenkyū-buntansha) |
NAKAGAKI Toshiyuki Hokkaido University, Research Institute for Electronic Science, Associate Professor, 電子科学研究所, 助教授 (70300887)
TAKAGI Seiji Hokkaido University, Research Institute for Electronic Science, Assistant Professor, 電子科学研究所, 助手 (80372259)
NISHIURA Yasumasa Hokkaido University, Research Institute for Electronic Science, Professor, 電子科学研究所, 教授 (00131277)
KOBAYASHI Ryo Hiroshima University, Graduate School of Science, Professor, 大学院理学研究科, 教授 (60153657)
上田 哲男 北海道大学, 電子科学研究所, 教授 (20113524)
高橋 健吾 北海道大学, 電子科学研究所, 研究機関研究員
|
Project Period (FY) |
2003 – 2006
|
Project Status |
Completed (Fiscal Year 2006)
|
Budget Amount *help |
¥16,600,000 (Direct Cost: ¥16,600,000)
Fiscal Year 2006: ¥4,100,000 (Direct Cost: ¥4,100,000)
Fiscal Year 2005: ¥4,100,000 (Direct Cost: ¥4,100,000)
Fiscal Year 2004: ¥4,100,000 (Direct Cost: ¥4,100,000)
Fiscal Year 2003: ¥4,300,000 (Direct Cost: ¥4,300,000)
|
Keywords | True slime mold / coupled oscillators / cellular intelligence / mathematical modeling / intracellular computation / self-organization / cellular algorithm / cell behavior / 粘膜 / 真正粘菌 / Physarum / 細胞行動 / 細胞リズム / アメーバ運動 / 結合振動子系 / 細胞インテリジェンス / アメーバ行動 / スモールワールドネットワーク / ネットワーク最適化 / パターン形成 / 動物行動学 |
Research Abstract |
With use of the single giant amoeboid cell of the Physarum plasmodium, we performed unconventional experiments concerning cellular intelligence and also constructed mathematical models based on nonlinear intracellular dynamics for clarifying computational algorithm. (1) The organism solved such geometrical puzzles as maze problems, Steiner problems, Fermart problems. (2) The formation of vein networks was governed by the trade-off among minimum path-length, assurance for not-breaking apart, and minimum danger, etc. (3) Mathematical models were constructed based on a coupled oscillators where the conservation of mass and the regional difference of the visco-elastic properties were taken into account. The model simulated synchronous oscillation patterns observed in the Physarum. (4) A mathematical model was constructed by taking into adaptive mechanism for the formation of veins. The model simulated maze solving by the Physarum, Steiner problems and Fermart problems.
|