• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Algebra, Geometry, Analysis in non-linear equations

Research Project

Project/Area Number 15340004
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

UMEMURA Hiroshi  Nagoya University, Graduate school of mathematics, Professor, 大学院多元数理科学研究科, 教授 (40022678)

Co-Investigator(Kenkyū-buntansha) FUJIWARA Kazuhiro  Nagoya University, Graduate school of mathematics, Professor, 大学院多元数理科学研究科, 教授 (00229064)
OKADA Soichi  Nagoya University, Graduate school of mathematics, Professor, 大学院多元数理科学研究科, 教授 (20224016)
OKAMOTO Kazuo  Tokyo University, Graduate school of Mathematical Science, Professor, 大学院数理科学研究科, 教授 (40011720)
MUKAI Shigeru  Kyoto University, Research Institute of Mathematical Science, Professor, 数理解析研究所, 教授 (80115641)
NOUMI Masatoshi  Kobe University, Faculty of Science department of Mathematics, Professor, 理学部, 教授 (80164672)
Project Period (FY) 2003 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥13,400,000 (Direct Cost: ¥13,400,000)
Fiscal Year 2006: ¥1,900,000 (Direct Cost: ¥1,900,000)
Fiscal Year 2005: ¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2004: ¥3,700,000 (Direct Cost: ¥3,700,000)
Fiscal Year 2003: ¥4,200,000 (Direct Cost: ¥4,200,000)
KeywordsDifferential Galois theory / Groupoid / Painleve equations / Elliptic Painleve equations / Lie pseudo-group / 差分方程式 / 特殊関数 / Painleve方程式 / 微分Galois理論 / Garmier系 / 野海系
Research Abstract

One of the central theme of this research is the differential Galois theory of infinite dimension. The head investigator presented in 1996 one such theory. Malgrange interested in this theory himself proposed a general differential Galois theory. Umemura's differential Galois theory is a Galois theory of differential field extension. Namely when a differential field extension L/K is given, we construct a kind of Galois closure of the extension, The Galois group p is th infinitesimal automorphism group of this Galois closure. On the other hand, Malgrange's Galois roupois is attached to a foliation on a variety. Namely when a foliation F on a variety is given, the Galois groupoid is the smallest algebraic Lie groupoid whose Lie algebra contains the tangent vectors to the foliation F.
These two definitions are seemingly different but specialists observed that they coincide in Examples. In recent three years the development in this direction was remarkable. On can show in the absolute case L/K, by which we mean the base field K is a subfield in the constant field of L, these two definitions are equivalent. The proof is done through the universal
On the other hand one of the investigator of this project, M. Noumi at Kobe University studied the most general Painleve equation or the Master equation called the elliptic Painleve equation. He showed among other things that as Riccati solutions to the elliptic Painleve equation, there appear hyperelliptic geometric functions. This result is one of the most remarkable results in this field of research.

Report

(5 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (33 results)

All 2006 2005 2004 Other

All Journal Article (27 results) Publications (6 results)

  • [Journal Article] Galois Theory and Paimleve equations2006

    • Author(s)
      H.Umemura
    • Journal Title

      Proc. theovie asymptotiques et semimaines et conque 14

      Pages: 269-308

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Invitation to Galois theory2006

    • Author(s)
      H.Umemura
    • Journal Title

      IRMA Lect. Math. Theor. Physics 9

      Pages: 269-289

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Invitation to Galois theory2006

    • Journal Title

      in Differential Equations and Quantum Groups, IRMA Lect. Math. Theor. Physics 9

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Galois theory and painlove equations2006

    • Author(s)
      H.Umemura
    • Journal Title

      Proc Theolie asymptotique sem et comque 14

      Pages: 269-308

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Invitation to Galois Theory2006

    • Author(s)
      H.Umemura
    • Journal Title

      IRMA Lect. Math. Then. Physics 9

      Pages: 269-289

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Point configurations, cremona transformations and elliptic difference Painlove equation2006

    • Author(s)
      M.Noumi他 4名
    • Journal Title

      Proc Theovie asymptolique-semimaine et comyque 14(発表予定)

      Pages: 29-29

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Polarized K3 surfaces of genus thirteen2006

    • Author(s)
      S.Mukai
    • Journal Title

      Adv. Study. Pure Math. 45

      Pages: 315-326

    • Related Report
      2006 Annual Research Report
  • [Journal Article] Hyper geometui solutions to The 9-Painlere equations2005

    • Author(s)
      H.Noumi他4名
    • Journal Title

      RIMS Kokyuroku 1422

      Pages: 77-98

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] (Translateil Ry T. masuda)2005

    • Author(s)
      K.Kajiwana, T.Masuda, M.Noumi
    • Journal Title

      RIMS Kokyuroku 1422

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Cubic pencils and Painleve equations2005

    • Author(s)
      M.Noumi et al.
    • Journal Title

      Funkcial.Ekvac. 48

      Pages: 147-160

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Construction of hypergeometric solutions to the q-Painleve equations2005

    • Author(s)
      M.Noumi et al.
    • Journal Title

      Int.Math.Res.Not. 24

      Pages: 1441-1463

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A Pfaffian-Hafnian analogue of Borchardt's identity2005

    • Author(s)
      S.Okada et al.
    • Journal Title

      Electron.J.Combin. 12

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Folding transformations of the Painleve equations2005

    • Author(s)
      K.Okamoto et al.
    • Journal Title

      Math.Ann. 331

      Pages: 713-738

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Monodramy preserving deformation and differential Gelois group2004

    • Author(s)
      H.Umemura
    • Journal Title

      Analyse complexs, systemes dymamiques, sommabilite…Asterisque, 26912 269

      Pages: 253-269

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Cremoma tranformations and elliptic Painleve equations2004

    • Author(s)
      M.Noumi他4名
    • Journal Title

      RIMS Kokyuroku 1400

      Pages: 197-263

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] symmetries in Painleve equations2004

    • Author(s)
      M.Noumi
    • Journal Title

      Sugaku Erp. 17

      Pages: 203-218

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Monodromy preserving deformation and differential Galois group2004

    • Author(s)
      H.UMEMURA
    • Journal Title

      in Analyse complexe, systemes dynamiques, sommabilite des seriesdivergentes et theories galoisiennes (Loday Richaud ed.) Asterisque 296

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] -Galois theory and Painleve equations2004

    • Journal Title

      in Proc. Theorie asymptotique et equations de Painleve (発表予定)

      Pages: 40-40

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Cremona nolutmms to the 8-Painlere tguatins Y. ohtoo, Y. Yamada, Hrpegomehiv transformatioms aned illiptic Painlere iguntim2004

    • Author(s)
      K.Kajiwara, T.Masuda, M.Noumi.Y.Ohta, Y.Yamada
    • Journal Title

      RIMS Kokyouroku 1400

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Symmehiis in Painlere equitions2004

    • Author(s)
      M.Noumt, Y.Yamada
    • Journal Title

      sugaku Exp. 17

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Symmetries in Painlere equation2004

    • Author(s)
      M.Noumi, Y.Yamada
    • Journal Title

      Sugaku Exp. 17

      Pages: 203-218

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Asky-Wilson polynomials2004

    • Author(s)
      M.Noumi, Y.Yamada
    • Journal Title

      Laredo Lect on Orth.Poly.

      Pages: 371-442

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Hypergeometric solutions to q-Painleve equations2004

    • Author(s)
      M.Noumi et al.
    • Journal Title

      Int.Math.Res.Not. 47

      Pages: 2497-2521

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Geometric realization of T-shaped root systems2004

    • Author(s)
      S.Mukai
    • Journal Title

      Encyclopeadia Muth.Sci 132

      Pages: 123-129

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Galois Theory and Painleve equations

    • Author(s)
      H.Umemura
    • Journal Title

      Angers大学におけるシンポジウム報告集 (submitted)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Invitation to Galois Theory

    • Author(s)
      H.Umemura
    • Journal Title

      Shasbourg大学におけるシンポジウム報告集 (submitted)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Monodromy preserving deformation and Galois Group

    • Author(s)
      H.Umemura
    • Journal Title

      Asteriaque (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Publications] Mukai, Shigeru: "Canonical curves of genus eight"Proc.Japan Acad.Ser.A Math.. 110. 147-162 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Umemura, Hiroshi: "Monodromy preserving deformation and differential Galois group"Proc.J.-P.Ramis symposium 2003. (発表予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Noumi, Masatoshi et al.: "_<10>E_9 solution to the elliptic Painleve equation"J.Phys.A.. 36. L263-L272 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Noumi, Masatoshi et al.: "Monodromy groups of hypergeometric functions satisfying algebraic equations"Tohoku Math.J.. 55. 189-205 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Noumi, Masatoshi et al.: "Tropical Robinson-Schensted-Knuth correspondence and discrete Toda equations"数理解析研究所講究録. 1302. 155-171 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Mukai, Shigeru: "An introduction to moduli and invariants"Cambridge Univ.Press. 503 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi