• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Complex symplectic varieties and derived categories

Research Project

Project/Area Number 15340008
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University (2005)
Kyoto University (2003-2004)

Principal Investigator

NAMIKAWA Yoshinori  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80228080)

Co-Investigator(Kenkyū-buntansha) FUJIKI Akira  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80027383)
GOTO Ryushi  Osaka University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30252571)
USUI Sampei  Osaka University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (90117002)
OHNO Koji  Osaka University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (20252570)
SATAKE Ikuo  Osaka University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (80243161)
丸山 正樹  京都大学, 大学院・理学研究科, 教授 (50025459)
上野 健爾  京都大学, 大学院・理学研究科, 教授 (40011655)
森脇 淳  京都大学, 大学院・理学研究科, 教授 (70191062)
加藤 文元  京都大学, 大学院・理学研究科, 助教授 (50294880)
前野 俊昭  京都大学, 大学院・理学研究科, 助手 (60291423)
川口 周  京都大学, 大学院・理学研究科, 助手 (20324600)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥5,800,000 (Direct Cost: ¥5,800,000)
Fiscal Year 2005: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2004: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2003: ¥2,600,000 (Direct Cost: ¥2,600,000)
Keywordsderived categories / complex symplectic variety / deformation / Mukai flop / nilpotent orbit / birational geometry / Poisson変形 / 変形理論 / フロップ / 複素シンプレクティック多様性 / シンプレクティック特異点 / 複素単純リー環
Research Abstract

1. Mukai flops : (a) We proved that there is an equivalence between derived categories under a Mukai flop. The equivalence is not obtained from the graph of the flop, but from the fiber product. But the same picture is no more true for a G(2,4) flop ; in other words, the functor obtained from the graph of the fiber product is not an equivalence. (b) The nilpotent orbit closure of Complex a simple Lie algebra is a symplectic singularity. All crepant resolutions of such singularities are obtained as the Springer resolutions. In general, the member of crepant resolutions of a singularity is greater than one. We proved that crepant resolutions of such a nilpotent orbit closure are described as a finite sequence of Mukai flops of type A, D and E_6.
2. Deformations of singular symplectic varieties. We proved that, model the minimal under conjecture, the following are equivalent.
(1) a projective symplectic variety Y has a crepant resolutions
(2) a projective symplectic variety Y has a smoothing by a deformations

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (20 results)

All 2005 2004 2003 Other

All Journal Article (15 results) Publications (5 results)

  • [Journal Article] On Hermitian geometry of complex surfaces2005

    • Author(s)
      藤木 明, M.Pontecorvo
    • Journal Title

      Prog.Math, Birkhausen Boston, MA 234

      Pages: 153-163

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Mukai flops an derived categories II2004

    • Author(s)
      並河 良典
    • Journal Title

      CRM Proc.Series, AMS 38

      Pages: 149-175

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Uniqueness of crepant resolutions, and symplectic singularities2004

    • Author(s)
      並河 良典, B.Fu
    • Journal Title

      Ann.Inst. Fourier 54

      Pages: 1-19

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Mukai flops and derived categories II2004

    • Author(s)
      Y.Namikawa
    • Journal Title

      CRM Proc.Series, AMS 38

      Pages: 149-175

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Uniqueness of crepant resolutions and symplectic varieties2004

    • Author(s)
      B.Fu, Y.Namikawa
    • Journal Title

      Ann.Inst.Fourier 54

      Pages: 1-19

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Mukai flops and derived categories II2004

    • Author(s)
      並河 良典
    • Journal Title

      CRM Proc.Lecture Notes 38

      Pages: 149-175

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Uniqueness of crepant resolutions and symplectic singularities2004

    • Author(s)
      並河 良典, B.Fu
    • Journal Title

      Ann.Inst.Fourier 54

      Pages: 1-19

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Mukai flops and derived categories2003

    • Author(s)
      並河 良典
    • Journal Title

      J.Reine Angew.Math. 560

      Pages: 65-76

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Mukai flops and derived categories2003

    • Author(s)
      Y.Namikawa
    • Journal Title

      J.Reine Angew.Math. 560

      Pages: 65-76

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On deformation of Q-factorial symplectic varieties

    • Author(s)
      並河 良典
    • Journal Title

      J.Reine Amgew.Math. (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Birational geometry of symplectic reductions of nilpotent orbits

    • Author(s)
      並河 良典
    • Journal Title

      Advanced Studies in Pure Math. 43(to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On deformations of Q-factorial symplectic varieties

    • Author(s)
      Y.Namikawa
    • Journal Title

      J.Reine Angew.Math. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Birational geometry of symplectic resolutions of nilpotent orbits

    • Author(s)
      Y.Namikawa
    • Journal Title

      Adv.Stud.in. Pure Math. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On deformations of Q-factorial symplectic varieties

    • Author(s)
      並河良典
    • Journal Title

      J.Reine Angew.Math. (掲載予定)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Birational geometry of symplectic resolutions of nilpotent orbits

    • Author(s)
      並河良典
    • Journal Title

      Adv.Stu.Pure Math. 43(掲載予定)

    • Related Report
      2005 Annual Research Report
  • [Publications] 並河 良典: "Mukai flops and derived categories"J.Reine Angew.Math.. 560. 65-76 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 並河 良典: "Mukai flops and derived categories II"C.R.M.Proc.Series, AMS. (発表予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] B.Fu, 並河 良典: "Uniqueness of crepant resolutions and symplectic singularities"Ann.Inst.Fourier. (発表予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Cornelissen, 加藤文元: "Equivariant deformation of Munford curves and of ordinary curves of positive characteristic"Duke Math.J.. 116. 431-470 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 加藤 文元: "Rigid analytic geometry (Japanese)"数学,「論説」. 55. 392-417 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi