• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of the theory of mixed motifs

Research Project

Project/Area Number 15340013
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTohoku University

Principal Investigator

HANAMURA Masaki  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (60189587)

Co-Investigator(Kenkyū-buntansha) KANEKO Masanobu  Kyushu University, Graduate School of Mathematical Science, Professor, 大学院・数理学研究科, 教授 (70202017)
MORITA Yasuo  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (20011653)
ISHIDA Masanori  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (30124548)
YUKIE Akihiko  Tohoku University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (20312548)
SAITO Shuji  University of Tokyo, Graduate School of Mathematical Science, Professor, 大学院・数理科学研究科, 教授 (50153804)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥5,300,000 (Direct Cost: ¥5,300,000)
Fiscal Year 2005: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2004: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2003: ¥1,900,000 (Direct Cost: ¥1,900,000)
Keywordsmotif / algebraic cycles / cohomology / 代数多様体 / 分解定理 / 三角圏
Research Abstract

1. For a variety with singularities, a theorem of Barthel, Brasselet, Fiesler, Gabber and Kaup asserts that the cycle class of an algebraic cycle in Borel-Moore homoloty can be lifted to a class in intersection cohomology. We gave an alternative proof of this theorem based on the decomposition theorem. Further we formulated a motivic analogue of this theorem, and proved it holds true under the "standard" conjectures on algebraic cycles (due to Grothendieck, Bloch-Beilinson-Murre, and Beilinson-Soule).
2. We gave a definition of intersection Chow group, which is a motivic analogue of intersection cohomology. We gave a detailed account of this theory in a paper.
3. We showed the motivic motivic decomposition theorem (motivic analogue of the decomposition theorem) holds for a Lefschetz pencil with a surface as the total space. The same holds under some hypotheses for a Lefschetz pencil of any dimension.
4. We wrote a paper on the construction of the triagulted category of mixed motivic sheaves over a base variety. This generalizes our previously established theory over a field.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (9 results)

All 2005 2004 Other

All Journal Article (8 results) Publications (1 results)

  • [Journal Article] Absolute Chow-K"unneth projectors for modular varieties2005

    • Author(s)
      B.Gordon, M.Hanamura, J.P.Murre
    • Journal Title

      J. Reine Angew. Math. 580

      Pages: 139-155

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Absolute Chow-Kunneth projectors for modular varieties2005

    • Author(s)
      B.Gordon, M.Hanamura, J.P.Murre
    • Journal Title

      J.Reine Angew.Math. 580

      Pages: 139-155

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Mixed motives and algebraic cycles, II2004

    • Author(s)
      Masaki Hanamura
    • Journal Title

      Invent. Math. 158

      Pages: 105-179

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Motivic sheaves and intersection cohomology2004

    • Author(s)
      Masaki Hanamura
    • Journal Title

      Proceedings of France-Japanese symposium in Singularity Theory Sapporo (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Mixed motives and algebraic cycles II2004

    • Author(s)
      Masaki Hanamura
    • Journal Title

      Invent.Math. 158

      Pages: 105-179

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Mixed motives and algebraic cycles II2004

    • Author(s)
      M.Hanamura
    • Journal Title

      Invent.Math. 158

      Pages: 105-179

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Motivic sheaves and intersection cohomology

    • Author(s)
      Masaki Hanamura
    • Journal Title

      Proceedings of Franco-Japanese symposium in Singularity Theory (Sapporo, 2004) (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Motivic sheaves and intersection cohomology

    • Author(s)
      Masaki Hanamura
    • Journal Title

      Proceedings of Franco-Japanese symposium in Singularity Theory (Sapporo, 2004) (to appear)

    • Related Report
      2005 Annual Research Report
  • [Publications] B.Gordon, J.P.Murre, M.Hanamura: "Relative Chow-Kunneth proectors for wodular Varieties"J.reine Angew.Math. 558. 1-14 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi