• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Bergman zeta function and index theorems of complex domains

Research Project

Project/Area Number 15340040
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of Tokyo

Principal Investigator

HIRACHI Kengo  The University of Tokyo, Graduate School of Mathematical Sciences, Associate Professor, 大学院・数理学研究科, 助教授 (60218790)

Co-Investigator(Kenkyū-buntansha) KOMATSU Gen  Osaka University, Graduate School of Sciences, Associate Professor, 大学院・理学研究科, 助教授 (60108446)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥6,600,000 (Direct Cost: ¥6,600,000)
Fiscal Year 2005: ¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 2004: ¥2,000,000 (Direct Cost: ¥2,000,000)
Fiscal Year 2003: ¥2,600,000 (Direct Cost: ¥2,600,000)
KeywordsBergman kernel / Parabolic invariant theory / CR geometry / strictly pseudoconvex domain / conformal geometry
Research Abstract

The Bergman-zeta function is a meromorphic function of one complex variable that is defined by the analytic continuation of the integral of weighted Bergman kernel on the diagonal ; here the integral is considered as a function of a parameter s with which we define the weight r^s for a domain r>0. We fist showed that the residues of the Bergman-zeta function contain a biholomorphic invariant and proved that the invariant is given by the integral of a local pseudo-hermitian invariant P, which is defined as the log term of the Szego kernel. In 2 dimensions, we also showed that P agrees with the CR Q-curvature, which is defined via a CR invariant differential operator, while for higher dimensions, the relation between P and CR Q-curvature was difficult to analyze. We thus also studied the Q-curvature in conformal geometry, which is the area where Q-curvature was originally introduced. The definition of the Q-curvature was not so clear as it is based on an argument using analytic continuation in dimension. We thus gave (with Prof.Fefferman) an explicit formula of the Q-curvature in terms of the ambient metric. We also showed (with Prof.Graham) that the variation of the integral of the Q-curvature in a deformation of conformal structure is given by the Fefferman-Graham obstruction tensor. These result can be translated to the case of CR Q-curvature and give its expression in terms of the ambient metric of the CR structure. This argument, together with parabolic invariant theory, gives, in 2-dimensions, a simple proof of the fact that P agrees with CR Q-curvature, and for higher dimensions, a way to construct several pseudo-hermitian invariant that has invariance property similar to CR Q-curvature; we hope to purse this approach and write the difference between P and CR Q-curvature.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (14 results)

All 2006 2005 2004 2003 Other

All Journal Article (12 results) Publications (2 results)

  • [Journal Article] Logarithmic singularity of the Szego kernel and a global invariant of strictly pseudoconvex domains2006

    • Author(s)
      平地 健吾
    • Journal Title

      Annals of Mathematics 163

      Pages: 389-405

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Logarithmic singularity of the Szego kernel and a global invariant of strictly pseudoconvex domains2006

    • Author(s)
      K.Hirachi
    • Journal Title

      Ann. of Math. 163

      Pages: 499-515

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The ambient obstruction tensor and Q-curvature2005

    • Author(s)
      平地健吾, Robin Graham
    • Journal Title

      IRMA Lect. Math. Theor. Phys. 8

      Pages: 59-71

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The ambient obstruction tensor and Q-curvature2005

    • Author(s)
      C.Robin Graham, K.Hirachi
    • Journal Title

      IRMA Lect.Math.Theor.Phys. 8

      Pages: 59-71

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The ambient obstruction tensor and Q-curvature2005

    • Author(s)
      平地健吾, Robin Graham
    • Journal Title

      IRMA Lect.Math.Theor.Phys. 8

      Pages: 59-71

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Conformally invariant powers of the Laplacian-A complete non-existence theorem2004

    • Author(s)
      平地健吾, Rod Gover
    • Journal Title

      Journal of American Mathematical Society 17

      Pages: 389-405

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A link between the asymptotic expansions of the Bergman kernel and the Szego kernel2004

    • Author(s)
      平地 健吾
    • Journal Title

      Advanced Studies in Pure Mathematics 42

      Pages: 115-121

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary 2004 Annual Research Report
  • [Journal Article] A link between the asymptotic expansions of the Bergman kernel and the Szego kernel2004

    • Author(s)
      K.Hirachi
    • Journal Title

      Adv.Stud.Pure Math. 42

      Pages: 115-121

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Conformally invariant powers of the Laplacian -- A complete non-existence theorem2004

    • Author(s)
      Rod Gover, K.Hirachi
    • Journal Title

      Jour.Amer.Math.Soc. 17

      Pages: 389-405

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Ambient metric construction of Q-curvature in conformal and CR geometries2003

    • Author(s)
      平地健吾, Charles Fefferman
    • Journal Title

      Mathematical Research Letters 10

      Pages: 819-832

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Ambient metric construction of Q-curvature in conformal and CR geometries2003

    • Author(s)
      Charles Fefferman, K.Hirachi
    • Journal Title

      Math.Res.Lett. 10

      Pages: 819-832

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Logarithmic singularity of the Szego kernel and a global invariant of strictly pseudoconvex domains

    • Author(s)
      平地 健吾
    • Journal Title

      Annals of Mathematics (掲載決定)

    • Related Report
      2004 Annual Research Report
  • [Publications] 平地健吾, Charles Fefferman: "Ambient metric construction of Q-curvature in conformal and CR geometries"Mathematical Research Letters. 10. 819-832 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 平地健吾, Rod Gover: "Conformally invariant powers of the Laplacian - A complete non-existence theorem"Journal of American Mathematical Society. 17. 389-405 (2004)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi