• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on a new class of hyperbolic systems

Research Project

Project/Area Number 15340044
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionOsaka University

Principal Investigator

NISHITANI Tatsuo  Osaka University, Graduate School of Science, Professor, 理学研究科, 教授 (80127117)

Co-Investigator(Kenkyū-buntansha) HAYASHI Nakao  Osaka University, Graduate School of Science, Professor, 理学研究科, 教授 (30173016)
DOI Shinichi  Osaka University, Graduate School of Science, Professor, 理学研究科, 教授 (00243006)
SUGIMOTO Mitsuru  Osaka University, Graduate School of Science, Associate Professor, 理学研究科, 助教授 (60196756)
MATSUMURA Akitaka  Osaka University, Infirmation Science and Technology, Professor, 情報科学研究科, 教授 (60115938)
OKAJI Takashi  Kyoto University, Graduate School of Science, Associate Professor, 大学院理学研究科, 助教授 (20160426)
梶谷 邦彦  筑波大学, 数学系, 教授 (00026262)
Project Period (FY) 2003 – 2006
Project Status Completed (Fiscal Year 2006)
Budget Amount *help
¥10,100,000 (Direct Cost: ¥10,100,000)
Fiscal Year 2006: ¥2,100,000 (Direct Cost: ¥2,100,000)
Fiscal Year 2005: ¥2,300,000 (Direct Cost: ¥2,300,000)
Fiscal Year 2004: ¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 2003: ¥3,300,000 (Direct Cost: ¥3,300,000)
Keywordsdouble characteristic / null bicharacteristic / Gevrey space / well posedness / hyperbolic operator / initial value problem / elementary decomposition / Hamilton map / Ivrii分解 / 陪特性帯 / 対称化可能 / 還元次数 / 先験的評価 / 重み関数 / 擬微分作用素 / ワイルーヘルマンダークラス
Research Abstract

We have obtained a definitive result about the classification of hyperbolic double characteristics.
A hyperbolic double characteristic is called non effectively hyperbolic characteristic if the Hamilton map at the reference point admits only pure imaginary eigenvalues. A remaining fundamental question was whether the Cauchy problem around non effectively hyperbolic characteristic is C-infty well-posed?
We classify hyperbolic double characteristics whether the behavior of null bicharacteristics around the reference double characteristic is stable with respect to the doubly characteristic manifold, that is whether there exists a null bicharacteristic with a limit point in the doubly characteristic manifold. We have obtained the following results:
If the behavior of null bicharacteristics around the reference double characteristic then the principal symbol is elementary decomposable and the Cauchy problem is C-infty well-posed. On the other hand, if the behavior of null bicharacteristic is unstable then the principal symbol is not elementary decomposable and the Cauchy problem is not C-infty well-posed. We obtained more detailed results. In this unstable case the Cauchy problem is Gevrey 5 well-posed and this index 5 is optimal in the following sense; if there is a null bicharacteristic with a limit point in the doubly characteristic manifold then the Cauchy problem is not Gevrey s well-posed for any s>5.
Based on the above results, we obtained the following result : assume that the codimension of the doubly characteristic manifold is 3 and the all eigenvalues of the Hamilton map remain to be pure imaginary then the Cauchy problem is Gevrey 5 well-posed.

Report

(5 results)
  • 2006 Annual Research Report   Final Research Report Summary
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (34 results)

All 2007 2006 2004 2003 Other

All Journal Article (26 results) Book (1 results) Publications (7 results)

  • [Journal Article] Second order hyperbolic operators with coefficients sum of Dowers of functions2007

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Osaka J. Math. 44

      Pages: 1-17

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Second order hyperbolic operators with coefficients sum of powers of functions2007

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Osaka J.Math. 44

      Pages: 1-17

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Second order hyperbolic operators with coefficients sum of powers of functions2007

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Osaka J. Math. 44

      Pages: 1-17

    • Related Report
      2006 Annual Research Report
  • [Journal Article] An example of the Cauchy problem well posed in any Gevrey class2007

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Annali Mat. Pura Appl. 23(in press)(To appear)

    • Related Report
      2006 Annual Research Report
  • [Journal Article] An example of the Cauchy problem well posed in any Gevrey class2007

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Annali Mat.Pura Appl. (掲載決定)(to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Smoothly symmetrizable complex systems and the real reduced dimension2006

    • Author(s)
      T.Nishitani, J.Vaillant
    • Journal Title

      Tsukuba J. Math. 30

      Pages: 259-271

    • NAID

      120005366084

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] On the Cauchy problem for $D_t^2-D_xa(t,x)D_x$ in the Gevrey class of order $s>2$2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Comm. P.D.Es. 31

      Pages: 1289-1319

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Non effectively hyperbolic operators and bicharacteristics2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Phase Space Analysis of PDE's(Birkhauser)

      Pages: 217-246

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Smoothly symmetrizable complex systems and the real reduced dimension2006

    • Author(s)
      T.Nishitani, J.Vaillant
    • Journal Title

      Tsukuba J.Math. 30

      Pages: 259-271

    • NAID

      120005366084

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On the Cauchy problem for D_t^2- D_xa(t,x)D_x in the Gevrey class of order s>22006

    • Author(s)
      T.Nishitani
    • Journal Title

      Comm.P.D.Es. 31

      Pages: 1289-1319

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Non effectively hyperbolic operators and bicharacteristics2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Phase Space Analysis of PDE's, Birkhauser

      Pages: 217-246

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Annual Research Report 2006 Final Research Report Summary
  • [Journal Article] On the Cauchy problem for $D_t^2-D_xa(t,x)D_x$ in the Gevrey Class of order $s>2$2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Comm. P. D. E. 31

      Pages: 1289-1319

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On the Cauchy problem for $D_t^2-D_xa(t,x)^nD_x$2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Annali dell'Universita di Ferrara 52

      Pages: 395-430

    • Related Report
      2006 Annual Research Report
  • [Journal Article] On the Cauchy problem for $D_t^2-D_xa(t,x)^nD_x2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Annali dell'Universita'di Ferrara (to appear in Springer) (掲載決定)(to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Non effectively hyperbolic operators and bicharacteristics2006

    • Author(s)
      T.Nishitani
    • Journal Title

      Proceedings of the conference "Phase Space Analysis of PDE's" (to appear in Birkhauser) (掲載決定)(to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Smoothly symmetrizable complex systems and the reduced dimension2006

    • Author(s)
      T.Nishitani, J.Vaillant
    • Journal Title

      Tsukuba Journal of Mathematics (掲載決定)(to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Non effectively hyperbolic operators, Hamilton map and bicharacteristics2004

    • Author(s)
      T.Nishitani
    • Journal Title

      J. Math. Kyoto Univ. 44

      Pages: 55-98

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] An extension of Glaeser inequality and its applications2004

    • Author(s)
      T.Nishitani, S.Spagnolo
    • Journal Title

      Osaka J. Math. 41

      Pages: 145-157

    • NAID

      120004839344

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] Non effectively hyperbolic operators, Hamilton map and bicharacteristics2004

    • Author(s)
      T.Nishitani
    • Journal Title

      J.Math.Kyoto Univ. 44

      Pages: 55-98

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] An extension of Glaeser inequality and its applications2004

    • Author(s)
      T.Nishitani, S.Spagnolo
    • Journal Title

      Osaka J.Math. 41

      Pages: 145-157

    • NAID

      120004839344

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Journal Article] On finitely degenerate hyperbolic operators of second order2004

    • Author(s)
      T.Nishitani, F.Colombini
    • Journal Title

      Osaka J.Math. 41・4

      Pages: 933-947

    • NAID

      120005986901

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Non effectively hyperbolic operators, Hamilton map and bicharacteristics2004

    • Author(s)
      T.Nishitani
    • Journal Title

      J.Math.Kyoto Univ. 44・1

      Pages: 55-98

    • Related Report
      2004 Annual Research Report
  • [Journal Article] An extension of Glaeser inequality and its applications2004

    • Author(s)
      T.Nishitani, S.Spagnolo
    • Journal Title

      Osaka J.Math. 41・1

      Pages: 145-157

    • NAID

      120004839344

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Damped wave equation in the subcritical case2004

    • Author(s)
      N.Hayashi, E.I.Kaikina
    • Journal Title

      J.Differential Equations 207・1

      Pages: 161-194

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On the asymptotics for cubic nonlinear Schrodinger equations2004

    • Author(s)
      N.Hayashi, P.I.Naumkin
    • Journal Title

      Complex Var.Theory Appl. 49・5

      Pages: 339-373

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Dispersion of singularities of solutions for Schrodinger equations2004

    • Author(s)
      S.Doi
    • Journal Title

      Comm.Math.Phys. 250・3

      Pages: 473-505

    • Related Report
      2004 Annual Research Report
  • [Book] Hyperbolic Problems and Related Topics2003

    • Author(s)
      T.Nishitani, F.Colombini
    • Total Pages
      436
    • Publisher
      International Press
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2006 Final Research Report Summary
  • [Publications] T.Nishitani, M.Oi Flaviano: "On the Cauchy problem for a weakly hyperbolic operator ; an intermediate case between effective hyperbolicity and Levi conditions"Partial Differential Equations and Mathematical Physics. 73-83 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Nishitani: "Hyperbolic systems with nondegenerate characteristics"Hyperbolic Differential Operators and Related Problems. 7-29 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Nishitani: "Hyperbolicity for systems"Analysis and Applications. 237-252 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Nishitani, J.Vaillant: "Smoothly symmetrizable systems and reduced dimension II"Tsukuba J.Math.. 27. 389-403 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Nishitani, G.Taglialatela: "The Conchy problem for semilinear second order aquatics with finite degeneracy"Hyperbolic Problems and Related Topics. 85-109 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Nishitani, A.Bove: "Necessary conditions for hyperbolic systems II"Japan J.Math.. 29. 357-388 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Nishitani, F.Colombini: "Hyperbolic Problems and Related Topics"International Press. 436 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi