• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Neural networks with excellent abilities in learning and recognition problems for complex patterns

Research Project

Project/Area Number 15500150
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Sensitivity informatics/Soft computing
Research InstitutionSendai National College of Technology

Principal Investigator

FUJIKI Nahomi M.  Sendai National College of Technology, Professor, 教授 (60259801)

Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2004: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 2003: ¥500,000 (Direct Cost: ¥500,000)
KeywordsNeural network / Kullback Divergence / Error Back Propagation / Identification / Scalability / Multi-layered network / Learning Algorithm / 汎化能力 / 手書き文字 / 認識能力 / 確率ニューロン / 逆問題
Research Abstract

Error back propagation is a well-known and powerful supervised learning algorithm for feed-forward multi-layered neural networks, but it is known to introduce the problem of its learning process being often trapped in a meta-stable state. It has been reported that the error back propagation algorithm with Kullback divergence instead of conventional quadratic error as an error measure demonstrates an excellent learning tendency and is expected to be applicable to various problems, even without the foreknowledge of their optimal network size.
We have studied this algorithm carefully based on the identification problem of handwritten numerical characters and discussed its abilities such as scalability, flexibility, damage tolerance, and recognition of unlearned data. The numerical studies have been done on the three-layered feed-forward network ; an input layer, a hidden middle layer with various numbers of neurons up to 8129, and an output layer. Results of numerical studies indicate that this learning algorithm can have high generalization ability and be sufficiently powerful for practical use. Those network abilities are also improved by increasing its size. If we prepare an enough size of network, we could easily obtain the identification rate of higher than 99% after a few learning steps and recognition rate for unlearned characters over 90%.
Those research results have been published on several papers in Research Reports on Sendai National College of technology, and also presented the papers at various conferences such as Tohoku-section Joint Convention of Institutes of Electrical And Information Engineers.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (10 results)

All 2004 2003 Other

All Journal Article (9 results) Publications (1 results)

  • [Journal Article] カルバック測度をエラー測度とするニューラルネットワークの文字認識と汎化能力の検討2004

    • Author(s)
      藤木なほみ
    • Journal Title

      仙台電波工業高等専門学校研究紀要 34

      Pages: 55-60

    • NAID

      40006636712

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] フィードフォワード型確率的層状ニューラルネットワークの学習能力2004

    • Author(s)
      藤木なほみ
    • Journal Title

      仙台電波工業高等専門学校研究紀要 34

      Pages: 61-66

    • NAID

      40006636713

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Recognition and generalization ability of neural networks using Kullback Divergence as an error measure2004

    • Author(s)
      Abe Yoko, Fujiki Nahomi M.
    • Journal Title

      Research Reports of Sendai National College of Technology No.34

      Pages: 55-60

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Learning abilities of a Stochastic Feed -forward Neural network2004

    • Author(s)
      Fujiki Nahomi M., Sasaki Ryutarou, Fujiki Sumiyoshi
    • Journal Title

      Research Reports of Sendai National College of Technology No.34

      Pages: 61-66

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] カルバック測度をエラー測度とするニューラルネットワークの認識と汎化能力の検討2004

    • Author(s)
      藤木なほみ
    • Journal Title

      仙台電波工業高等専門学校紀要 34

      Pages: 55-60

    • Related Report
      2004 Annual Research Report
  • [Journal Article] フィードフォワード型確率的層状ニューラルネットワークの学習能力2004

    • Author(s)
      藤木なほみ
    • Journal Title

      仙台電波工業高等専門学校紀要 34

      Pages: 61-66

    • NAID

      40006636713

    • Related Report
      2004 Annual Research Report
  • [Journal Article] カルバック測度を用いたエラーバックプロパゲーション学習則の学習及び認識能力の評価2003

    • Author(s)
      藤木なほみ
    • Journal Title

      仙台電波工業高等専門学校研究紀要 33

      Pages: 65-70

    • NAID

      110004734430

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Learning and Identification abilities of Error Back Propagation Algorithm with Kullback Divergence2003

    • Author(s)
      Fujiki Nahomi M., Baba Yoji, Harada Yusuke
    • Journal Title

      Research Reports of Sendai National College of Technology No.33

      Pages: 65-70

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] カルバック測度を用いたエラーバックプロパゲーション学習則の学習及び識字能力の評価2003

    • Author(s)
      藤木なほみ
    • Journal Title

      仙台電波工業高等専門学校紀要 33

      Pages: 65-70

    • Related Report
      2004 Annual Research Report
  • [Publications] 藤木なほみ: "カルバック測度を用いたエラーバックプロパゲーション学習則の学習及び認識能力の評価"仙台電波工業高等専門学校研究紀要. 33. 65-70 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi