• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

generalized cohomology and classifying spases

Research Project

Project/Area Number 15540004
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionIbaraki University

Principal Investigator

YAGITA Nobuaki  Ibaraki Univ., the College of Education, Professor, 教育学部, 教授 (20130768)

Co-Investigator(Kenkyū-buntansha) OKAYASU Takashi  Ibaraki Univ., the College of Education, associate Professor, 教育学部, 助教授 (00191958)
KUDOU Kenzi  Ibaraki Univ., the College of Education, Lecture, 教育学部, 講師 (00114017)
KANEDA Masaharu  Osaka City Univ., Faculty of Nat.Science, Professor, 理学部, 教授 (60204575)
TEZUKA Mithishige  Ryuukyuu Univ., Faculty of Nat.Science, Professor, 理学部, 教授 (20197784)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2004: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2003: ¥800,000 (Direct Cost: ¥800,000)
Keywordsclassifying space / generalized cohomology / BP-theory / BP理論
Research Abstract

Let p be a prime number and k a subfield of the complex number field C, which contains a primitive p-th root of 1. For a scheme X of finite type over k, the motivic cohomology H^<*,*> (X ; Z/p) = 【symmetry】_<m,n>H^<*,*> (X ; Z/p) is constructed by Suslin-Voevodsky ([Su-Vo],[Vo2]). For a smooth X, the cohomology H^<2*,*> (X ; Z/p) = 【symmetry】_nH^<2n,n> (X ; Z/p) is identified with CH^* (X)/p the classical mod p Chow ring of algebraic cyles on X.
The inclusion t_C : k ⊂ C induces a natural transformation (realization map) t^<m,n>_C : H^<m,n> → H^m(X(C) ; Z/p) where X(C) is the complex variety of C-valued points. Let us write the coimage
(1.1)h^<*,*>(X ; Z/p) = 【symmetry】_<m,n>H^<m,n>(X ; Z/p)/Ker(t^<m,n>_C)
It is known that there is an element r ∈ H^<0,1>(Speck(k) ; Z/p) with t^*_C(r) = 1. Then we have the bigraded algebra monomorphism
(1.2)h^<*,*>(XZ/p) 〓 H^* (X(C) ; Z/p)【cross product】Z/p[r,r^<-1>]
where the bidegree of x ∈ H^n (X(C) ; Z/p) is given by (n,n). When k C and the Beilinson-Lichtenbaum conjecture is true for p, we also have the injection II^*(X ; Z/p)【cross product】Z/p[r] 〓 h^<*,*>(X ; Z/p).
where t^<m,n>_C : H^<m,n>(X ; Z/p) → H^m(X(C) ; Z/p) is the realization map to C-valued points X(C) of X. Suppose that k = C and the B(m,p)-condition holds. Then this bigraded algebra h^<*,*> (X ; Z/p) is isomorphic as bidegree modules to gr H^*(X(C) ; Z/p)【cross product】Z/p[r] by the filtration F_1 = Im(t^<*,i>_C) and 0 ≠ r ∈ H^<0,1>(Spec(C) ; Z/p) 〓 Z/p, while the multiplications are different.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (19 results)

All 2005 2004 2003 Other

All Journal Article (16 results) Publications (3 results)

  • [Journal Article] Cohomology of moduli space of SO(n)-instantons with instanton number 12005

    • Author(s)
      Y.Kamiyama, A.Kono, M.Tezuka
    • Journal Title

      Toplogy and its applications

      Pages: 146-147

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The image of cyclic map of classify space2004

    • Author(s)
      N.Yagita
    • Journal Title

      J.Kyoto Math. 44

      Pages: 181-191

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Morava K-theory of extraspecial 2-groups2004

    • Author(s)
      B.Schuster
    • Journal Title

      Proc.Amer.Math.Soc. 132

      Pages: 1229-1239

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] On Kashiwara's equivalence in positive characteristic2004

    • Author(s)
      M.Kaneda
    • Journal Title

      Manuscripta Math. 114

      Pages: 457-468

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On tangent bundles of certain homogeneous spaces2004

    • Author(s)
      Y.Kamiyama
    • Journal Title

      Int.J.Pure and Appl.Math 11

      Pages: 329-334

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The image of cycle map of the classifying space of the exceptional Lie group F_4.2004

    • Author(s)
      N.Yagita
    • Journal Title

      J.Math.Kyoto Univ. 44

      Pages: 181-191

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Morava K-theory of exceptional 2-groups.2004

    • Author(s)
      B.Schuster, N.Yagita
    • Journal Title

      Proc.Amer.Math.Soc. 132

      Pages: 1229-1239

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On Kashiwara's equivalence in positive characteristic.2004

    • Author(s)
      M.Kaneda
    • Journal Title

      Manuscripta Math. 114

      Pages: 457-468

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On tangent bundles of certain homogeneous spaces2004

    • Journal Title

      Int.J.pure and applied Math. 11

      Pages: 329-334

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The image of cycle map of classifying space of exceptional Lie group F_42004

    • Author(s)
      N.Yagita
    • Journal Title

      J.Kyoto Math. 44

      Pages: 181-191

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On Kashiwara equivalence in positive characteristic2004

    • Author(s)
      M.Kaneda
    • Journal Title

      Manuscripta math. 144

      Pages: 4427-4450

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On tangent bundles of certain homogeneous spaces2004

    • Author(s)
      Y.Kamiyama
    • Journal Title

      Int.J.Pure and apple.Math. 11

      Pages: 329-334

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Examples for mod p motivic cohomology of classifying2003

    • Author(s)
      N.Yagita
    • Journal Title

      Trans.Amer.Math.Soc. 355

      Pages: 4427-4450

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On certain maximal cycle modules for the special linier algebra at a root of units2003

    • Author(s)
      M.Kaneda
    • Journal Title

      Pacific J.Math. 211

      Pages: 273-282

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Example for the mod p motivic cohomology of classifying spaces.2003

    • Author(s)
      N.Yagita
    • Journal Title

      Trans.AMS 355

      Pages: 4427-4450

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On certain maximal cyclic modules for quantized special linear algebra at a root of unity2003

    • Author(s)
      M.Kaneda
    • Journal Title

      Pacific J.Math. 211

      Pages: 273-283

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] Nobuaki Yagita: "Example for the mod P motivic cohomology of classifying spaces"Transactions Amer.Math.Soc.. 355. 4427-4450 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Nobuaki Yagita: "The mage of cycle map of the classifying space of the exceptional group F4"J.Kyoto University. (発表予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Kaneda, T.Nakamura: "On certain maximal cyclic modules for the quantized special linear algebra at a root of unity"Pacific J.Math.. 211. 273-282 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi