• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Investigation into algebraic structure of the category of representations of finite demensional algebras

Research Project

Project/Area Number 15540012
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNational University Corporation Tokyo University of Agriculture and Technology

Principal Investigator

YAMAGATA Kunio  Tokyo University of Agriculture and Technology, Graduate School, Institute of Symbiotic Science and Technology, Professor, 大学院・共生科学技術研究部, 教授 (60015849)

Co-Investigator(Kenkyū-buntansha) WADA Tomoyuki  Tokyo University of Agriculture and Technology, Graduate School, Institute of Symbiotic Science and Technology, Professor, 大学院・共生科学技術研究部, 教授 (30134795)
YOSHINO Yuji  Okayama University, Department of Mathematics, Professor, 理学部, 教授 (00135302)
ASASHIBA Hideto  Osaka City University, Graduate School Science, Associate Professor, 大学院・理学研究科, 助教授 (70175165)
IYAMA Osamu  Nagoya University, Graduate School of Mathematics, Asociate Professor, 大学院・多元数理科学研究科, 助教授 (70347532)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,700,000 (Direct Cost: ¥3,700,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥1,600,000 (Direct Cost: ¥1,600,000)
Keywordsfinite dimensional algebra / self-injective algebra / Frobenius algebra / category / representation / module / クイバー
Research Abstract

The aim of the project is to study algebraic structures of the category of representations of finite dimensional algebras.
(1) We studied the stable categories of the algebras with Galois coveings by repetitive algebras, and proved the invariance of the property that a self-injecitve algebra has a Galois covering by the repetitive algebra of a quasi-tilted algebra.
(2) We studied non-Frobenius self-injecitve (=quasi-Frobenius) algebras, so that we found a characterization of those algebras and showed an example of non-Frobenius self-injective algebras with arbitrarily large dimension. By this example, we know that the example given by Nakayama in 1939 is the one with the smallest dimension.
(3) It is an open problem when an algebra has a preinjective component. We studied the problem for one-point extension algebras. We clarified that the existence of preinjective components of a one-point extension depends on AR-components where summands of the module defining the extension belong.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (16 results)

All 2006 2005 2004 Other

All Journal Article (13 results) Publications (3 results)

  • [Journal Article] A general form of non-Frobenius self-injective algebras2006

    • Author(s)
      A.Skowronski, K.Yamagata
    • Journal Title

      Colloquium Mathematicum 105・-

      Pages: 135-141

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Invariance of selfinjective algebras of quasitilted type under stable equivalences2006

    • Author(s)
      O.Kerner, A.Skowronski, K.Yamagata
    • Journal Title

      manuscripta mathematica 119・3

      Pages: 359-381

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Invariance of selfinjective algebras of quasitilted type under stable equivalences2006

    • Author(s)
      O.Kerner, A.Skowronski, K.Yamagata
    • Journal Title

      manuscripta mathematica 119(3)

      Pages: 359-381

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A general form of non-Frobenius self-injective algebras2006

    • Author(s)
      A.Skowronski, K.Yamagata
    • Journal Title

      Colloquium Mathematicum 105

      Pages: 135-141

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Positive Galois coverings of self-injective algebras2005

    • Author(s)
      A.Skowronski, K.Yamagata
    • Journal Title

      Advances in Mathematics 194・-

      Pages: 398-436

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Galois covering of self-injective algebras by twisted repetitive algebras2005

    • Author(s)
      K.Yamagata
    • Journal Title

      Advances in rig theory (World Sci. Publ. ) -・-

      Pages: 295-306

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Positive Galois coverings of self-injective algebras2005

    • Author(s)
      Skowronski, K.Yamagata
    • Journal Title

      Advances in Mathematics 194

      Pages: 398-436

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Galois covering of self-injective algebras by twisted repetitive algebras2005

    • Author(s)
      K.Yamagata
    • Journal Title

      Advances in rig theory (World Sci.Publ.)

      Pages: 295-306

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Invariability of selfinjective algebras of quasitilted type under stable equivalences2005

    • Author(s)
      O.Kerner, A.Skowronski, K.Yamagata
    • Journal Title

      manuscripta mathematica 119・3

      Pages: 359-381

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Finiteness of the strong global dimension of radical square zero algebras2004

    • Author(s)
      O.Kerner, A.Skowronski, D.Zacharia, K.Yamagata
    • Journal Title

      Central Eurobean Journal of Mathematics 2・1

      Pages: 103-111

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Finiteness of the strong global dimension of radical square zero algebras2004

    • Author(s)
      O.Kerner, A.Skowronski, D.Zacharia, K.Yamagata
    • Journal Title

      Central Eurobean Journal of Mathematics 2(1)

      Pages: 103-111

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A general form of non-Frobenius self-injective algebras

    • Author(s)
      Skowronski, K.Yamagata
    • Journal Title

      Colloquium Mathematicum 105

      Pages: 135-141

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Positive Galois coverings of selfinjective algebras

    • Author(s)
      A.Skowronski, K.Yamagata
    • Journal Title

      Advances in Mathematics (印刷中)

    • Related Report
      2004 Annual Research Report
  • [Publications] Otto Kerner: "Finiteness of the stromg global dimension of radical square zero algebras."Central European Journal of Mathematics. 2・1. 103-111 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Andrzej Skowronski: "On invariability of self-injective algebras of tilted type under stable equivalences."Proc.Amer.Math.Soc.. 132・3. 659-667 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Andrzej Skowronski: "On selfinjective Artin algebras having nonperiodic generalized standard Auslander-Reiten components."Colloq.Math.. 96・2. 235-244 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi