• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Duality of sheaves with actions

Research Project

Project/Area Number 15540018
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionNagoya University

Principal Investigator

HASHIMOTO Mitsuyasu  Nagoya University, Graduate School of Mathematics, Associate professor, 大学院・多元数理科学研究科, 助教授 (10208465)

Co-Investigator(Kenkyū-buntansha) OKADA Soichi  Nagoya University, Graduate School of Mathematics, Associate professor, 大学院・多元数理科学研究科, 助教授 (20224016)
HAYASHI Takahiro  Nagoya University, Graduate School of Mathematics, Associate professor, 大学院・多元数理科学研究科, 助教授 (60208618)
YOSHIDA Ken-ichi  Nagoya University, Graduate School of Mathematics, Associate professor, 大学院・多元数理科学研究科, 助教授 (80240802)
KURANO Kazuhiko  Meiji University, School of Science and Technology, Professor, 理工学部, 教授 (90205188)
MIYAZAKI Mitsuhiro  Kyoto University of Education, Faculty of Education, Associate professor, 教育学部, 助教授 (90219767)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2003: ¥1,600,000 (Direct Cost: ¥1,600,000)
Keywordsaction / duality / geometric quotient / global F-regularity / Schubert variety / 不変式環 / 純 / 有限型 / 捻じれ逆像 / 捻れ逆像 / 擬関手 / 正準加群 / スキーム
Research Abstract

As an analogue of the duality of quasi-coherent sheaves with actions over schemes, we studied the duality with actions over formal schemes. As a result, we have proved the following : Let S be a universally catenary Nagata Noetherian scheme, f : X→Y a surjective universally open S-morphism of S-schemes. If X is of finite type over S and Y is reduced, then Y is of finite type over S. As an appliatlon, we obtained a new proof of the finiteness of geometric quotients due to Fogarty. As another application, we proved that if S is a Noetherian scheme, f : X→Y a faithfully flat S-morphism of S-schemes, and X is of finite type over S, then Y is of finite type over S. Later, as a generalization, we proved that we may replace the faithful flatness by purity. Moreover, we obtained a new proof of the global F-regularity of Schubert varieties due to Lauritzen, Raben-Pedersen, and Thomsen. Moreover, we obtained a new geometric proof of the computation of invariant subrings first provedin 70's by De Concini and Procesi. Moreover, we extended the class of rings of which we take the invariant subrings, from the class of polynomial rings to that of determinantal rings. Lastly, we proved the following : Let R be a Dedekind domain, G an affine flat R-group scheme, B a flat R-algebra on which G acts. If a Noetherian R-algebra and an R-algebra map A→B^G is given, and if for any R-algebra which is an algebraically closed field, the induced map Kotimes A→(Kotimes B)^{Kotimes G} is an isomorphism, then for any R-algebra S, the induced map S otimes A→(Sotimes B)^{Sotimes G} is an isomorphism.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (30 results)

All 2006 2005 2004 2003 Other

All Journal Article (20 results) Book (4 results) Publications (6 results)

  • [Journal Article] Another proof of global F-regularity of Schubert varieties2006

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      Tohoku Math.J. 58(to appear)

    • NAID

      110004762686

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity2006

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Proc.Amer.Math.Soc. 134

      Pages: 55-65

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A pure subalgebra of a finitely generated algebra is finitely generated2005

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      Proc.Amer.Math.Soc. 133

      Pages: 2233-2235

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Another proof of theorems of De Concini and Procesi2005

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      J.Math.Kyot Univ. 45・4

      Pages: 701-710

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings2005

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Nagoya Math.J. 117

      Pages: 47-75

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Another proof of theorems of De Concini and Procesi2005

    • Author(s)
      Mitsuyasu Hasnimoto
    • Journal Title

      J.Math.Kyoto Univ. 45・4

      Pages: 701-710

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Another proof of theorems of De Concini and Procesi2005

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      J.Math.Kyoto Univ. 45・4

      Pages: 701-710

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings2005

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Nagoya Math.J. 177

      Pages: 47-75

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Minimal relative Hilbert-Kunz multiplicity2004

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Illinois J.Math. 48

      Pages: 273-294

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Numerical equivalence defined on Chow groups of Noetherian local rings2004

    • Author(s)
      Kazuhiko Kurano
    • Journal Title

      Invent.Math. 157

      Pages: 575-619

    • Related Report
      2004 Annual Research Report
  • [Journal Article] The total coordinate ring of a normal projective variety2004

    • Author(s)
      E.J.Elizondo, K.Kurano, K.-i.Watanabe
    • Journal Title

      J.Algebra 276

      Pages: 625-637

    • Related Report
      2004 Annual Research Report
  • [Journal Article] "Geometric quotients are algebraic schemes"based on Fogarty's idea2003

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      J.Math.Kyoto Univ. 43

      Pages: 807-814

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] "Geometric quotients are algebraic schemes" based on Fogarty's idea2003

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      J.Math. Kyoto Univ. 43

      Pages: 807-814

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley-Reisner rings with large multiplicities are Cohen-Macaulay

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      J.Algebra (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Buchsbaum Stanley-Reisner rings with large multiplicities are Cohen-Macaulay

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      J.Algebra (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Another proof of global F-regularity of Schubert varieties

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      Tohoku Math.J. (to appear)

    • NAID

      110004762686

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings with large multiplicities are Cohen--Macaulay

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      J.Algebrao (to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A pure subalgebra of a finitely generated algebra is finitely generated

    • Author(s)
      Mitsuyasu Hashimoto
    • Journal Title

      Proc.Amer.Math.Soc. (掲載予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Hilbert-Kunz multiplicity of three-dimensional local rings

    • Author(s)
      Kei-ichi Watanabe, Ken-ichi Yoshida
    • Journal Title

      Nagoya Math.J. (掲載予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Buchsbaum Stanley-Reisner rings with minimal multiplicity

    • Author(s)
      Naoki Terai, Ken-ichi Yoshida
    • Journal Title

      Proc.Amer.Math.Soc. (掲載予定)

    • Related Report
      2004 Annual Research Report
  • [Book] 古典群の表現論と組合せ論(上・下巻)2006

    • Author(s)
      岡田 聡一
    • Total Pages
      552
    • Publisher
      培風館
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] Representations of classical groups and combinatorics (in two volumes)2006

    • Author(s)
      Soichi Okada
    • Total Pages
      552
    • Publisher
      Baifukan
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 古典群の表現論と組合せ論(上下巻)2006

    • Author(s)
      岡田 聡一
    • Total Pages
      552
    • Publisher
      培風館
    • Related Report
      2005 Annual Research Report
  • [Book] 古典群の表現論と組合せ論

    • Author(s)
      岡田聡一
    • Publisher
      培風館(出版予定)
    • Related Report
      2004 Annual Research Report
  • [Publications] Mitsuyasu Hashimoto: ""Geometric quotients are algebraic schemes" based on Fogarty's idea"J.Math.Kyoto Univ.. 43・4(発表予定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Nobuo Hara, Ken-ichi Yoshida: "A generalization of tight closure and adjoint ideals"Trans.Amer.Math.Soc.. 355. 3143-3174 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Kazufumi Eto, Ken-ichi Yoshida: "Notes on Hilbert-Kunz multiplicity of Rees algebras"Comm.Algebra. 31-12. 5943-5976 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Kei-ichi Watanabe, Ken-ichi Yoshida: "Minimal relative Hilbert-Kunz multiplicity"Illinois J.Math.. (発表予定).

    • Related Report
      2003 Annual Research Report
  • [Publications] Yuji Kamoi, Kazuhiko Kurano: "On Chow groups of G-graded rings"Comm.Algebra. 31. 2141-2160 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Kazuhiko Kurano: "Numerical equivalence defined on Chow groups of Noetherian local rings"Invent.Math.. (発表予定).

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi