• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Modular forms and the number theory of cyclotomic fields.

Research Project

Project/Area Number 15540046
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionTokai University

Principal Investigator

OHTA Masami  Tokai Univ., School of Science, Professor, 理学部, 教授 (40025490)

Co-Investigator(Kenkyū-buntansha) HORIE Kuniaki  Tokai Univ., School of Science, Professor, 理学部, 教授 (20201759)
TSUJI Takae  Tokai Univ., School of Science, Assiyant, Professor (2003 only), 理学部, 講師 (30349328)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥1,400,000 (Direct Cost: ¥1,400,000)
Fiscal Year 2004: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2003: ¥700,000 (Direct Cost: ¥700,000)
Keywordsmodular forms / cyclotomic fields / Hecke algebras / Eisenstein series
Research Abstract

It is known that, if the Eisenstein components of p-adic (or A-adic) Hecke algebras attached to cusp forms are Gorenstein rings, then one can completely determine the structure of the Iwasawa modules obtained from ideal class groups of cyclotomic fields. However, this seems to be a very difficult problem. In contrast to this, the Gorenstein property of similar Hecke algebras attached to modular forms seems relatively easier to achieve. In fact, Skinner and Wiles have established such a property under certain numerical conditions. We investigated the latter problem from a point of view completely different from Skinner and Wiles, and also obtained applications to the theory of cyclotomic fields.
First, as for the Gorenstein property of Hecke algebras, in connection with the companion forms in the spaces of modular forms (mod p), we proved that:
・If the dimension of certain space of companion forms is one, then certain Eisenstein component of the Hecke algebra attached to modular forms is Gorenstein.
As an application of our previous result, we also proved that:
・If certain generalized Bernoulli number (multiplied by an elementary factor) is a p-adic unit, then the above one-dimensionality follows.
These two results imply a numerical criterion as in the work, of Skinner and Wiles; but our method covers a wider class of Eisenstein components than theirs.
As for the application to the theory of cyclotomic fields, we have shown, that:
・Under the assumption that the Eisenstein components of the Hecke algebras attached modular forms are Gorenstein, one can explicitly describe the Iwasawa modules in terms of A-adic Hecke algebras.
Our article on these results is accepted for publication in J. reine angew. Math.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report

Research Products

(15 results)

All 2004 2003 Other

All Journal Article (12 results) Publications (3 results)

  • [Journal Article] On number knots2004

    • Author(s)
      Kuniaki Horie, Mitsuko Horie
    • Journal Title

      Poc.of the 2nd Workshop on Number Theory

      Pages: 49-67

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On number knots2004

    • Author(s)
      Kuniaki Horie, Mitsuko Horie
    • Journal Title

      Proc.of the 2nd Workshop on number theory

      Pages: 49-67

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Or number Knots2004

    • Author(s)
      Kuniaki Horie
    • Journal Title

      Pnoc.of the 2nd workshop on number theory

      Pages: 49-67

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Congruence modules related to Eisenstein series2003

    • Author(s)
      Masami Ohta
    • Journal Title

      Ann.Scient.Ec.Norm.Sup. 36

      Pages: 225-269

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Relations among certain number knots2003

    • Author(s)
      Kuniaki Horie, mitsuko Horie
    • Journal Title

      Acta Anith. 108・4

      Pages: 303-313

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the Iwasawa λ-invarients of real abelian fields2003

    • Author(s)
      Takae Tsuji
    • Journal Title

      Trans.Amer.Math.Soc. 355

      Pages: 3699-3714

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Congruence modules related to Eisenstein series2003

    • Author(s)
      Masami Ohta
    • Journal Title

      Ann.Scient.Ec.Norm.Gup-t 36

      Pages: 225-229

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Relations among certain number knots2003

    • Author(s)
      Kuniaki Horie, Mitsuko Horie
    • Journal Title

      Acta.Arith 108.4

      Pages: 303-313

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the Iwasawa λ-invariants of real abelian fields2003

    • Author(s)
      Takae Tsuji
    • Journal Title

      Trans.Amer.Math.Soc. 355

      Pages: 3699-3714

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Companion forms and the structure of p-adic Hecke algebras

    • Author(s)
      Masami Ohta
    • Journal Title

      J.reine angew.Math. 掲載予定

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Companion forms and tha atructure of p-adic Hecke algebras

    • Author(s)
      Masami Ohata
    • Journal Title

      J.reine anger.Math. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Companion forms and the structure of p-cdic Hecke algebnas

    • Author(s)
      Masami Ohta
    • Journal Title

      J.neine angew.Math. (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Publications] Masami Ohta: "Congruence modules related to Eisenstein series"Ann.Scient.Ec.Norm.Sup.. 36. 225-269 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Kuniaki Horie: "Relations amoug certain number knots"Acta Arithmetica. 108・4. 303-313 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Takae Tsuji: "On the Iwasawa λ-invariants of real abelian fields"Transactions of the AMS. 355・9. 3699-3714 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-03-31   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi