• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Shafarevich Correspondence and Mordell-Weil Lattices

Research Project

Project/Area Number 15540048
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionRIKKYO UNIVERSITY

Principal Investigator

SHIODA Tetsuji  Rikkyo U., Math., Prof.Emer., 理学部, 教授 (00011627)

Co-Investigator(Kenkyū-buntansha) AOKI Noboru  Rikkyo U., Math., Prof., 理学部, 教授 (30183130)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2004: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2003: ¥1,900,000 (Direct Cost: ¥1,900,000)
KeywordsShafarevich Correspondence / Mordell-Weil Lattices / Elliptic Surface / Singular fibre / DS-triples / abc-theorem / Tate-Shafarevich group / Hodge Conjecture / 整数点 / DS-トリプル / Davenport-Stothers3対 / 整点 / 極大な特異ファイバー
Research Abstract

The idea of Shafarevich correspondence makes it possible to relate the elliptic curves having given discriminant with the integral points of the partner elliptic curve. Combined with the theory of Mordell-Weil lattices, this idea enables the principal investigator to obtain the following results :
(1)Determination of K3 surface with a maximal singular fibre
(2)Application of Davenport-Stothers triples to elliptic surfaces
(3)Abc-theorem and the number of singular fibres of an elliptic surface over P^1
On the other hand, the investigator Aoki have studied the arithmetic of elliptic curves and abelian varieties over a number field, as well as the Hodge conjecture. More specifi cally, he has treated the following subjects :
(4)Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion
(5)Hodge conjecture for the jacobian varieties of generalized Catalan curves,
(6)On the generalized Gross-Tate conjecture for elementary abelian 2-extensions

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (16 results)

All 2005 2004 2003 Other

All Journal Article (15 results) Publications (1 results)

  • [Journal Article] Elliptic surfaces and Davenport-Stothers triples2005

    • Author(s)
      塩田 徹治(Tetsuji Shioda)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli To appear

    • NAID

      110007689248

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Elliptic surfaces and Davenport-Stothers triples2005

    • Author(s)
      Tetsuji Shioda
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • NAID

      110007689248

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Elliptic surfaces and Davenport-Stothers triples2005

    • Author(s)
      塩田徹治(Tetsuji Shioda)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli (To appear)

    • NAID

      110007689248

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On Tate's refinement for a conjecture of Gross and its generalization2005

    • Author(s)
      青木昇(Noboru Aoki)
    • Journal Title

      J.Theorie des Nombres de Bordeaux. (To appear)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Acta Arithmetica 112

      Pages: 209-227

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Tokyo J.Math. 27

      Pages: 313-335

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli 53

      Pages: 145-168

    • NAID

      110007689265

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] On the Tate-Shafarevich groups of semistable elliptic curves with a rational 3-torsion2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Acta Arithmetica

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Tokyo J.Math.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A finiteness theorem on pure Gauss sums2004

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • NAID

      110007689265

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The Hodge conjecture for the jacobian varieties of generalized Catalan curves2004

    • Author(s)
      青木昇(Noboru Aoki)
    • Journal Title

      Tokyo J.Math. 27

      Pages: 313-335

    • Related Report
      2004 Annual Research Report
  • [Journal Article] The elliptic K3 surfaces with a maximal singular fibre2003

    • Author(s)
      塩田 徹治(Tetsuji Shioda)
    • Journal Title

      C.R.Acad.Sci.Paris, Ser.I 337

      Pages: 461-466

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] On the generalized Gross-Tate conjecture for elementary abelian 2-extensions2003

    • Author(s)
      青木 昇(Noboru Aoki)
    • Journal Title

      Comment.Math.Univ.Sancti Pauli 52

      Pages: 197-206

    • NAID

      110007689278

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The elliptic K3 surfaces with a maximal singular fibre2003

    • Author(s)
      Tetsuji Shioda
    • Journal Title

      C.R.Acad.Sci.Paris, Ser. I

      Pages: 337-337

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the generalized Gross-Tate conjecture for elementary abelian 2-extensions2003

    • Author(s)
      Noboru Aoki
    • Journal Title

      Comment.Math.Univ.Sancti Pauli

    • NAID

      110007689278

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] T.Shioda: "The elliptic K3 surfaces with a maximal fibre."C.R.Acad.Sci.Paris, Ser.I. 337. 461-466 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi