• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on finite Dehn surgeries on knots and links

Research Project

Project/Area Number 15540061
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionSaitama University

Principal Investigator

SHIMOKAWA Koya  Saitama University, Faculty of Science, Associate Professor, 理学部, 助教授 (60312633)

Co-Investigator(Kenkyū-buntansha) MIZUTANI Tadayoshi  Saitama University, Faculty of Science, Professor, 理学部, 教授 (20080492)
SAKAMOTO Kunio  Saitama University, Faculty of Science, Professor, 理学部, 教授 (70089829)
NAGASE Masayoshi  Saitama University, Faculty of Science, Professor, 理学部, 教授 (30175509)
EGASHIRA Shinji  Saitama University, Faculty of Science, Assistant Professor, 理学部, 助手 (00261876)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2003: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsKnot / Dehn surgery / 3-manifold / essential surface / 3次元多様体論 / 結び目理論
Research Abstract

Dehn surgery is an operation yielding 3-manifolds using knots and links in the 3-sphere. It is known that any closed orientable 3-manifold can be obtained by a Dehn surgery on a link in the 3-sphere. Knots in the 3-sphere can be classified into three types ; torus knots, satellite knots and hyperbolic knots. Since Dehn surgeries on torus knots and satellite knots have been characterized in a sense, the most interesting case now is the hyperbolic knot case. By W.Thurston's research on Dehn surgeries on hyperbolic knots, we know that most Dehn surgeries on hyperbolic knots yield hyperbolic manifolds. For the hyperbolic knot case, the number of exceptional Dehn surgeries on a hyperbolic knot, i.e. Dehn surgeries on a hyperbolic knot which yield non-hyperbolic manifolds, is known to be finite. Hence characterizing such exceptional surgeries is a very important problem. We are studying such exceptional surgeries on Montesinos knots. Since reducible surgeries and toroidal surgeries on Montesinos knots have been characterized, we studied finite surgeries and Seifert surgeries on Montesinos knots. Especially we studied some classes of Montesinos knots for which the existence of finite surgeries is undetermined and we obtained partial results. There we used a method, developed by M.Culler and P.Shalen, which uses character varieties of fundamental groups of knot complements. Unfortunately as the study has not finished, the complete characterization of such surgeries is a next project. We also obtained a new significant relation between essential surfaces in Montesinos knot exteriors and their character varieties.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (22 results)

All 2005 2004 2003 Other

All Journal Article (19 results) Book (1 results) Publications (2 results)

  • [Journal Article] Essential laminations and branched surfaces in the exteriors of links2005

    • Author(s)
      M.Brittenham, C.Hayashi, M.Hirasawa, T.Kobayashi, K.Shimokawa
    • Journal Title

      Japan. J. Math 31

      Pages: 25-96

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Foliations associated with Nambu-Jacobi structures2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      Tokyo J. Math. 28

      Pages: 33-54

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Integrability of Plane Fields Defined by 2-Vector Fields2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      Internat. J. Math. 16

      Pages: 197-212

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] CR Einstein-Weyl structures2005

    • Author(s)
      T.Ohkubo, K.Sakamoto
    • Journal Title

      Tsukuba J. Math 29

      Pages: 309-361

    • NAID

      120005349039

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Essential laminations and branched surfaces in the exteriors of links2005

    • Author(s)
      M.Brittenham, C.Hayashi, M.Hirasawa, T.Kobayashi, K.Shimokawa
    • Journal Title

      Japan.J.Math. 31

      Pages: 25-96

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Foliations associated with Nambu-Jacobi Structures2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      Tokyo J.of Math. 28

      Pages: 33-54

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Integrability of Plane Fields Defined by 2-Vector Fields2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      Internat.J.Math. 16

      Pages: 197-212

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] CR Einstein -Weyl structures2005

    • Author(s)
      T.Ohkubo, K.Sakamoto
    • Journal Title

      Tsukuba J.Math 29

      Pages: 309-361

    • NAID

      120005349039

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Essential laminations and branched surfaces in the exteriors of links2005

    • Author(s)
      M.Brittenham, C.Hayashi, M.Hirasawa, T.Kobayashi, K.Shimokawa
    • Journal Title

      Japan.J.Math 31

      Pages: 25-96

    • Related Report
      2005 Annual Research Report
  • [Journal Article] CR Einstein-Weyl structures2005

    • Author(s)
      T.Ohkubo, K.Sakamoto
    • Journal Title

      Tsukuba J.Math 29

      Pages: 309-361

    • NAID

      120005349039

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Integrability of Plane Fields Defined by 2-Vector Fields2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      International Journal of Mathematics 16

      Pages: 197-212

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Foliations associated with Nambu-Jacobi structures2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      Tokyo Journal of Mathematics 28

      Pages: 33-54

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Essential laminations and branched surfaces in the exteriors of links2005

    • Author(s)
      K.Shimokawa et al.
    • Journal Title

      Japan.J.Math 31(未定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Foliations associated with Nambu-Jacobi structures2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      Tokyo Journal of Mathematics 28(未定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Integrability of plane fields defined by 2-vector field2005

    • Author(s)
      K.Mikami, T.Mizutani
    • Journal Title

      International Journal of Mathematics 未定

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Tangle sum and constructible spheres2004

    • Author(s)
      M.Hachimori, K.Shimokawa
    • Journal Title

      J. Knot Theory Ramifications 13

      Pages: 373-383

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Tangle sum and constructible spheres2004

    • Author(s)
      M.Hachimori, K.Shimokawa
    • Journal Title

      J.Knot Theory Ramifications 13

      Pages: 373-383

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary 2004 Annual Research Report
  • [Journal Article] Variational problems of normal curvature tensor and concircular scalar fields2003

    • Author(s)
      K.Sakamoto
    • Journal Title

      Tohoku Math. J. 55

      Pages: 207-254

    • NAID

      110000027009

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Variational problems of normal curvature tensor and concircular scalar fields2003

    • Author(s)
      K.Sakamoto
    • Journal Title

      Tohoku Math.J. 55

      Pages: 207-254

    • NAID

      110000027009

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 数学ガイダンスhyper2005

    • Author(s)
      数学セミナー編集部編
    • Total Pages
      274
    • Publisher
      日本評論社
    • Related Report
      2005 Annual Research Report
  • [Publications] Masahiro Hachimori, Koya Shimokawa: "Tangle sum and constructible spheres"Journal of Knot Theory and Its Ramifications. 13(掲載決定). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Kunio Sakamoto: "Variational problems of normal curvature tensor and concircular scalar fields"Tohoku Mathematical Journal. 55. 207-254 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi