• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Unified approach of Ricci-flat manifolds

Research Project

Project/Area Number 15540070
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

GOTO Ryushi  Osaka University, Graduate School of Science, Associate professor, 大学院・理学研究科, 助教授 (30252571)

Co-Investigator(Kenkyū-buntansha) FUJIKI A.  Osaka University, Graduate School of Science, professor, 大学院・理学研究科, 教授 (80027383)
MABUCHI T.  Osaka University, Graduate School of Science, professor, 大学院・理学研究科, 教授 (80116102)
NAMIKAWA Y.  Osaka University, Graduate School of Science, professor, 大学院・理学研究科, 教授 (80228080)
FUKAYA K.  Kyoto University, Department of mathematics, professor, 大学院・理学研究科, 教授 (30165261)
ONO K.  Hokkaido University, Department of Mathematics, professor, 大学院・理学研究科, 教授 (20204232)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,800,000 (Direct Cost: ¥3,800,000)
Fiscal Year 2005: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2004: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2003: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsCalabi-Yau structure / hyperK"ahler structure / G_2 structure / Spin(7) structure / geometric structure / Deformations / Moduli spaces / generalized structure / カラビーヤオ構造 / カラビ・ヤオ多様体 / 超ケーラー多様体 / G_2多様体 / シンプレクティク多様体 / Spin(7)多様体
Research Abstract

The list of possible Lie groups arising as holonomy groups of Ricci-flat Riemannian manfolds implies that there are four interesting classes of Lie groups : SU(n), Sp(m), G_2 and Spin(7).
The special unitary group SU(n) arises as the holonomy group of Calabi-Yau manifolds and Sp(m) is the holonomy group of hyperK"ahler manifolds. The exceptional Lie group G_2 and Spin(7) are respectively holonomy groups of 7 and 8 dimensional manifolds, which are called G_2 and Spin(7) manifolds.
There are superficial differences between these four classes of Riemannian manifolds, however the author shows that these four structures are regarded as geometric structures defined by special closed differential forms. He obtains a new approach of deformation problems of these structures. He shows that under certain cohomological condition, deformation space becomes a smooth manifolds of finite dimension. Hence he obtains a unified construction of moduli spaces of these four structures.
This approach is quite g … More eneral and he expects that there should exist many geometric structures on which his approach can be applied effectively. In fact, he develops deformation problems of (1) holomorphci symplectic structures and (2) generalized geometric structures : (CONTINUE TO NEXT PAGE)
(1)holomorphic symplectic structures
The author studies holomorphic symplectic structures which are not necessary K"ahlerian. He obtains a new criterion of unobstructed deformations and local Torelli type theorem. He also shows that the criterion holds on complex Nilmanifolds and further constructs an example of compact holomorphic symplectic manifold which has just obstructed deformations.
(2)generalized geometric structures
A notion of generlized geometric structures, which is recently introduced by Hitchin
Is based on an idea replacing the tangent bundle with the direct sum of the tangent and cotangent bundle on a manifold. Then complex structures and real symplectic structures are regarded as special cases of generalized complex structures.
The author focuses on the Clifford algebra and shows that generalized structures can be suitably understood as structures defined by the action under the conformal pin group.
Then he obtains a natural notion of generalized Calabi-Yau, hyperK"ahler G_2 and Spin(7) structures and establishes a deformation theory of generalized structures.
In particular, he has unobstructed deformations of generalized Calabi-Yau and Spin(7) structures. Less

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (18 results)

All 2005 2004 2003 Other

All Journal Article (15 results) Book (2 results) Publications (1 results)

  • [Journal Article] Simple singularities and symplectic fillings2005

    • Author(s)
      H.Ohta, K.Ono
    • Journal Title

      J.Differential Geom. 69

      Pages: 1-42

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Simple singularities And symplectic fillings2005

    • Author(s)
      H.Ohta, K.Ono
    • Journal Title

      J.Differential Geom. 69

      Pages: 1-42

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] An energy-theoretic Approach to the Hitchi-Kobayachi ・・・・I2005

    • Author(s)
      M.Mabuchi
    • Journal Title

      Invent.Math 159

      Pages: 225-243

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Simple Singularities and Symplectic fillings.2005

    • Author(s)
      H.Ohta, K.Ono
    • Journal Title

      J.Differential.Geom. 69

      Pages: 1-42

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Moduli spaces of topological calibrations, Calabi-Yau, hyperK"abler, G_2 and Spin(7) structures2004

    • Author(s)
      R.Goto
    • Journal Title

      International Journal of Math. 69, No.3

      Pages: 211-257

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] An energy theoretic approach to the Kobayashi-Hitchin correspondence for manifold I2004

    • Author(s)
      T.Mabuchi
    • Journal Title

      Invent.Math 159

      Pages: 225-243

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Uniquness of extremal K"abler metrics for an integral K"ahler class2004

    • Author(s)
      T.Mabuchi
    • Journal Title

      International Journal of Math. 15, No.6

      Pages: 531-546

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Compositio math.2004

    • Author(s)
      A.Fujiki
    • Journal Title

      Twistor spaces of algebraic dimension two associated to a connected sum of projective planes 140

      Pages: 1097-1111

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Moduli spaces of topological calibrations, Calabi-Yau, hyperK"ahler, G_2 and Spin(7) structures2004

    • Author(s)
      R.goto
    • Journal Title

      International Journal of Math. 69, No.3

      Pages: 211-257

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] An energy theoretic approach To the Kobayashi-Hitchin correspondence For manifolds I2004

    • Author(s)
      T.Mabuchi
    • Journal Title

      Invent Math. 159

      Pages: 225-243

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Uniquness of extremal K"ahler metrics for an integral K"ahler class2004

    • Author(s)
      T.Mabuchi
    • Journal Title

      International Journal of Math. 15, No.6

      Pages: 531-546

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Twistor spaces of algebraic dimension two, associated to a connected sum of projective planes2004

    • Author(s)
      A.Fujiki
    • Journal Title

      Compositio Math. 140

      Pages: 1097-1111

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Moduli spaces of topological Calibrations2004

    • Author(s)
      Ryushi Goto
    • Journal Title

      International Journal of Mathematics 15

      Pages: 211-257

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Mukai flops and derived categories2003

    • Author(s)
      Y.Namikawa
    • Journal Title

      J.reine, Angew.Math. 560

      Pages: 65-76

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Mukai flop and derived categories2003

    • Author(s)
      Y.Namikawa
    • Journal Title

      J.reine.Angew.Math 560

      Pages: 65-76

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 微分幾何学の最先端(Surveys in geometry special edition)2005

    • Author(s)
      後藤竜司, 中島啓, その他
    • Publisher
      倍風館
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 微分幾何学の最先端2005

    • Author(s)
      中島 啓, 後藤竜司その他
    • Total Pages
      275
    • Publisher
      培風館
    • Related Report
      2005 Annual Research Report
  • [Publications] R.Goto: "Moduli Spaces of topological Califrations …"Interational Journal of Mathematics. (to appear).

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi