• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Submanifolds of symmetric spaces

Research Project

Project/Area Number 15540075
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionShimane University

Principal Investigator

KIMURA Makoto  Shimane Univ., Interdisciplinary Faculty of Sci.Eng., Professor, 総合理工学部, 教授 (30186332)

Co-Investigator(Kenkyū-buntansha) HATTORI Yasunao  Shimane Univ., Interdisciplinary Faculty of Sci.Eng., Prof., 総合理工学部, 教授 (20144553)
MAEDA Sadahiro  Shimane Univ., Interdisciplinary Faculty fo Sci.Eng., Prof., 総合理工学部, 教授 (40181581)
YOKOI Katsuya  Shimane Univ., Interdisciplinary Faculty of Sci.Eng., Ass.Prof., 総合理工学部, 教授 (90240184)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2004: ¥1,500,000 (Direct Cost: ¥1,500,000)
Fiscal Year 2003: ¥1,700,000 (Direct Cost: ¥1,700,000)
KeywordsSymmetric spaces / Submanifolds / Minimality / Special Lagrangian / Austere / 微分幾何学 / 極小部分多様体 / ラグランジュ部分多様体 / 対象空間 / Lagrangian
Research Abstract

We investigated submanifolds in symmetric spaces, which are considered as a generalization of rules surfaces in 3-dimensional Euclidean space. First we consider submanifolds F which satisfies some good condition in symmetric space M^^〜 and also the space M of such all submanifolds. Then generally we can construct fibre bundle E over M and natural map from E to M^^〜 such that each fiber is mapped bijectively to F. From these object we can construct generalized ruled submanifolds M in M^^〜 from submanifolds Σ in M. In this context, fundamental problem is to study relationship of which M is minimal in M^^〜 and Σ in M. We gave some answers to this problem in some geometrically important cases.
On the other hand, we investigated congruence of Frenet curves in complex quadrics by using isoparametric functions on the unit sphere in the tangent space by the joint work with M. Ortega at Granada. Finally we proved fundamental theorem for minimal Lagrangian surfaces in the product of 2-spheres by the joint work with Kaoru Suizu.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (22 results)

All 2005 2003 Other

All Journal Article (17 results) Publications (5 results)

  • [Journal Article] A generalization of Cartan hypersurfaces2005

    • Author(s)
      M.Kimura
    • Journal Title

      Proc.9th International Workshop on Differential Geometry 9

      Pages: 51-59

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A class of real hypersurfaces in complex projective space2005

    • Author(s)
      M.Kimura
    • Journal Title

      Proc.9th International Workshop on Differential Geometry 9

      Pages: 61-67

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Real hypersurfaces some of whose geodesics are plane curves in nonflat complex space forms2005

    • Author(s)
      T.Adachi, M.Kimura, S.Maeda
    • Journal Title

      Tohoku Math.J. 57(to appear)

    • NAID

      110001232644

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Congruence classes of Frenet curves in complex quadrics2005

    • Author(s)
      M.Kimura, M.Ortega
    • Journal Title

      J.Geometry (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A generalization of cartan hypersurfaces2005

    • Author(s)
      M.Kimura
    • Journal Title

      Proc. 9th. International workshop in diff.geom 9

      Pages: 51-59

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A class of real hypersurfaces in complex projective space2005

    • Author(s)
      M.Kimura
    • Journal Title

      Proc.9th.International workshop in diff.geom 9

      Pages: 61-67

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Real hypersurfaces some of whose geodesics are plane curves2005

    • Author(s)
      T.Adachi, M.Kimura, S.Maeda
    • Journal Title

      Tohoku Math.J. 57(to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Cengruence classes of Frenet curves in complex quadrics2005

    • Author(s)
      M.Kimura, M.Ortega
    • Journal Title

      J.Geomety (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A generalization of Cartan hypersurfaces2005

    • Author(s)
      木村 真琴
    • Journal Title

      Proc.9th.intern.workshop on diff geom. 9

      Pages: 51-59

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A class of real hypersurfaces in complex projective space2005

    • Author(s)
      木村 真琴
    • Journal Title

      Proc.9th.intern.workshop on diff geom. 9

      Pages: 61-67

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Real hypersurfaces some of whose geodesics are plane curves in nonflat complex space forms2005

    • Author(s)
      T.Adachi, M.Kimura, S.Maeda
    • Journal Title

      Tohoku Math.J 57(to appear)

    • NAID

      110001232644

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Space of geodesics in hyperbolic spaces2003

    • Author(s)
      M.Kimura
    • Journal Title

      Mem.Fac.Sci.Eng.Shimane Univ. 36

      Pages: 61-67

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Space of geodesics in hypablic spaces2003

    • Author(s)
      M.Kimura
    • Journal Title

      Mem.Fac.Sci.Eng.Shimane Univ. 36

      Pages: 61-67

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Space of geodesics in hyperbolic spaces and Lorentz numbers2003

    • Author(s)
      木村 真琴
    • Journal Title

      Mem.Fuc.Sci.Fug.Shimane Univ. 36

      Pages: 61-67

    • NAID

      110006939920

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Bubbly continue and homogeneity2003

    • Author(s)
      K.Yokoi
    • Journal Title

      Houston J.Math. 29

      Pages: 337-343

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Babbly continua and homogeneity

    • Author(s)
      K.Yokoi
    • Journal Title

      Houston J.Math.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Congruence classes of Frenet curves in complex quadrics and isoparametric functions on spheres

    • Author(s)
      M.kimura, M.Ortega
    • Journal Title

      J.Geonetry (to appear)

    • Related Report
      2004 Annual Research Report
  • [Publications] M.Kimura: "Space of geodesics in hyperbolic spaces and Lorentz numbers"Mem.Faculty of Sci.and Engi.Shimane Univ.. 36. 61-67 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Kimura: "Ruled Lagrangian submanifolds in complex projective spaces"Surikaisekiken Kokyuroku. 1346. 155-158 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] V.A.Chatyrko, Y.Hattori: "Around the equality ind X=Ind X toward to a unifying theorem"Topology Appl.. 131. 295-302 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] S.Maeda, T.Adachi: "Circles and hypersurfaces in space forms"Mem.Faculty of Sci.and Engi.Shimane Univ.. 36. 1-9 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Yokoi: "Bubbly continua and homogeneity"Houston J.Math.. 29. 337-343 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi