• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Construction of the topological toric theory

Research Project

Project/Area Number 15540090
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionOsaka City University

Principal Investigator

MASUDA Mikiya  Osaka City University, School of Science, Professor, 大学院・理学研究科, 教授 (00143371)

Co-Investigator(Kenkyū-buntansha) HASHIMOTO Yoshitake  Osaka City University, School of Science, Associate Professor, 大学院・理学研究科, 助教授 (20271182)
KATO Shin  Osaka City University, School of Science, Associate Professor, 大学院・理学研究科, 助教授 (10243354)
HIBI Takayuki  Osaka City University, Graduate School of Science, Professor, 大学院・理学研究科, 教授 (80181113)
望月 拓郎  大阪市立大学, 大学院・理学研究科, 助手 (10315971)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2004: ¥1,700,000 (Direct Cost: ¥1,700,000)
Fiscal Year 2003: ¥1,800,000 (Direct Cost: ¥1,800,000)
Keywordstoric manifold / fan / convex polytope / combinatorics / topology / face ring / equivariant cohomology / graph theory / トーリック多様体
Research Abstract

We have developed the theory of toric varieties from a topological point of view. This is not only reconstruction of the theory of toric varieties in terms of topology but also provides new objected such as multi-fan and multi-polytope etc.which makes this research more interesting. The topological object corresponding to toric manifold is a torus manifold. The purpose of our research was to study geometrical properties of torus manifolds.
(1) Torus manifolds which have vanishing odd degree cohomology behave well among torus manifolds. In fact, toric manifolds have such property. I have characterized those torus manifolds in terms of orbit space in a joint work with Panov. Motivated by this research, I have characterized the numbers of simplices of simplicial cell decompositions of spheres. This solves a conjecture by Stanley.
(2) The relation between the topology of torus manifolds and graph theory is studied by Guillemin-Zara. This introduces an idea of equivariant topology in the theory of graph and is quite interesting. We have proved that the equivariant cohomology ring of a torus graph with axial function agrees with the face ring of a simplicial poset.
(3) The notion of small cover is in some sense a real version of toric theory. This has a lot of similarity to toric theory but there are some essential differences For instance, a small cever has a non-trivial fundamental group and most of small cavers are non-onientable while every toric manifold is simply connected and orientable. I tried to classify small covers over cubes as well as toric manifold over cubes.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (13 results)

All 2005 2004 2003 Other

All Journal Article (12 results) Publications (1 results)

  • [Journal Article] h-vectors of Gorenstein* simplicial posets2005

    • Author(s)
      Mikiya Masuda
    • Journal Title

      Advances in Mathematics 194巻

      Pages: 332-344

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] h-vectors of Gorenstein* simplicial posets2005

    • Author(s)
      Mikiya Masuda
    • Journal Title

      Advances in Mathematics 194

      Pages: 332-344

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] h-vectors of Gorenstein* simplicial posets2005

    • Author(s)
      Mikiya Masuda
    • Journal Title

      Advances in Mathematics 193巻2号

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Sasaki-Einstein twist of Kerr-AdS black holes2004

    • Author(s)
      Yoshitake Hashimoto
    • Journal Title

      Physics Letters, B 600巻

      Pages: 270-274

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Rigid resolutions and big Betti numbers2004

    • Author(s)
      Takayuki Hibi
    • Journal Title

      Commentarii Mathematici Helvetici 79巻4号

      Pages: 826-839

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the weights of end-pairs in n-end catenoids of genus zero2004

    • Author(s)
      Shin Kato
    • Journal Title

      Osaka Journal of Mathematics 41巻3号

      Pages: 507-532

    • NAID

      120005986924

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Sasaki-Einstein twist of Kerr-Ads black holes2004

    • Author(s)
      Yoshitake Hashimoto
    • Journal Title

      Physics Letters B600

      Pages: 270-274

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Rigid resolutions and big Betti numbers2004

    • Author(s)
      Takayuki Hibi
    • Journal Title

      Commentarii Mathematici Helvetici 79

      Pages: 826-839

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] On the weights of end-pairs in n-end catenoids of genues zero2004

    • Author(s)
      Shin Kato
    • Journal Title

      Osaka J.of Mathematics 41

      Pages: 507-532

    • NAID

      120005986924

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Rigid resolutions and big Betti numbers2004

    • Author(s)
      Takayuki Hibi
    • Journal Title

      Commentarii Mathematici helvetici 79巻4号

      Pages: 826-839

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Theory of toric varieties from the topological viewpoint2003

    • Author(s)
      Mikiya Masuda
    • Journal Title

      数理解析研究所講究録 1343

      Pages: 105-119

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Theory of toric varieties from the topological viewpoint2003

    • Author(s)
      Mikiya Masuda
    • Journal Title

      RIMS Koukyuroku 1343

      Pages: 105-119

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] Akio Hattori: "Theory of multi-fans"Osaka Journal of Mathematics. 40巻1号. 1-68 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi