• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The study on differential geometrical affine hypersurfaces of an affine space by making use of Information geometry

Research Project

Project/Area Number 15540093
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionChuo University

Principal Investigator

MATSUYAMA Yoshio  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (70112753)

Co-Investigator(Kenkyū-buntansha) YAMAMOTO Makoto  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (10158305)
MIYOSHI Shigeaki  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (60166212)
OHARU Shinnosuke  Chuo University, Faculty of Science and Engineering, Professor, 理工学部, 教授 (40063721)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 2005: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2004: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2003: ¥1,000,000 (Direct Cost: ¥1,000,000)
Keywordsaffine space / affine hypersurface / statiscal manifold / curvature tensor / Ricci tensor / local symmetry / nondegenerate metric / affine form / アファイン接続 / 局所対称 / 準対称 / 準リッチ対称 / 準局所対称 / リッチ平行 / リッチ準平行 / Blaschke超曲面
Research Abstract

Let R^<n+1> be an (n+1)-dimensional affine space with torsion free affine connection D and (M,∇) an affine hypersurface of (R^<n+1>,D). Let R,Ric be the curvature tensor for M, the Ricci tensor, respectively. Act R(X,Y) to R or Ric as the derivation for every vector tangent to M and we consider the conditions of R(X,Y)・R=0 or R(X,Y)・Ric=0 for every vector tangent to M. The purpose of the presnet paper is to consider whether the weaker conditon R(X,Y)・R=0 for every vectors X,Y tanget to M than the local symmetry means the local symmetry. Also, we consider whether the equivalence of the condition of R(X,Y)・R=0 and the condition of R(X,Y) Ric=0 are equivalence. We study the nondegenerate Blaschke hypersurfaces at 2003 and the nondegenerate hypersurfaces at 2004, 2005. We can prove that either a proper affine hypersphere or an affine cylindrical is the only nondegenerate affine hypersurface of affine space with torsion free affine connection which satisfies the Ricci semi-symmetry and the results is published by Result. Math. (2005) and give the lecture with respect to those results on International symposium (ISRAMSES, 2005). Since the affine fundamental form h is nondegenerate, we can see it as the nondegenerate metric and can study by the similar way with the study of hypersurfaces of a real space form and complex Kaehler hypersurfaces of a complex space form. But, such a metric is not compatible with h. Choosing the conjugate connection ∇^^- with respect to ∇, we just become to study the statiscal manifold and information geometry. We study them, noting that ∇+∇^^- is compatible with h. On and on, we go on them and we hereafter want to study the degenerate immersion.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (13 results)

All 2005 2004 Other

All Journal Article (12 results) Publications (1 results)

  • [Journal Article] Totally real surfaces of a complex space form2005

    • Author(s)
      Y.Matsuyama
    • Journal Title

      Int. J. Pure Appl. Math. 22

      Pages: 59-64

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the local symmetry of Kaehler hypersurfaces2005

    • Author(s)
      R.Aikawa, Y.Matsuyama
    • Journal Title

      Yokohama Math. J. 51

      Pages: 63-73

    • NAID

      120001740806

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Affine hypersurfaces with the Ricci semi-symmetry2005

    • Author(s)
      Y.Matsuyama
    • Journal Title

      Results Math. 47

      Pages: 115-121

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Totally real surfaces of a complex space form2005

    • Author(s)
      Yoshio Matsuyama
    • Journal Title

      Int.J.Pure Appl.Math. 22

      Pages: 59-64

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the local symmetry of Kaehler hypersurfaces2005

    • Author(s)
      R.Aikawa, Y.Matsuyama
    • Journal Title

      Yokohama Math.J. 51

      Pages: 63-73

    • NAID

      120001740806

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Totally real surface of a complex space form2005

    • Author(s)
      Yoshio Matsuyama
    • Journal Title

      Int.J.Pure Appl.Math 22

      Pages: 59-64

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Affine hypersurfaces with the Ricci semi-symmetry2005

    • Author(s)
      Yoshio Matsuyama
    • Journal Title

      Results.Math 47

      Pages: 115-121

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On the local symmetry of Kaehler hypersurfaces2005

    • Author(s)
      R.Aikawa, Y.Matsuyama
    • Journal Title

      Yokohama Mathematical Journal 51巻(印刷中)

    • NAID

      120001740806

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On real hypersurfaces of a complex projective space2004

    • Author(s)
      Y.Matsuyama
    • Journal Title

      Rev. Bull. Calcutta Math. Soc. 12

      Pages: 1-10

    • NAID

      40005136939

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Generalized CR-manifolds of a T-manifold2004

    • Author(s)
      U.C.De, Y.Matsuyama, A.K.Sengupta
    • Journal Title

      J. Korea Soc. Math. Educ. Ser. B. Pure Appl. Math. 11

      Pages: 175-187

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On real hypersurfaces of a complex projective space2004

    • Author(s)
      Y.Matsuyama
    • Journal Title

      Rev.Bull.Calcutta Math.Soc. 12

      Pages: 1-10

    • NAID

      40005136939

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Generalized CR-manifolds of a T-manifold2004

    • Author(s)
      U.C.De, Y.Matsuyama, A.K.Sengupta
    • Journal Title

      J.Korea Soc.Math.Educ.Ser.B.Pure Appl.Math 11

      Pages: 175-187

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Publications] V.C.De, Yoshio Matsuyama, A.K.Sengupta: "Generalized CR-submanifolds of a T-manifold"Nihonkai Mathematical Journal. (accepted). (2004)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi