• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research of structure of stable spike solutions of Gierer-Meinhardt system in non-oonvex domain in two space dimensions

Research Project

Project/Area Number 15540122
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionHIROSHIMA UNIVERSITY

Principal Investigator

OHNISHI Isamu  Hiroshima University, Graduate School of Science, Associate Professor, 大学院・理学研究科, 助教授 (30262372)

Co-Investigator(Kenkyū-buntansha) UEYAMA Daishin  Hiroshima University, Graduate School of Science, Assistant, 大学院・理学研究科, 助手 (20304389)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 2004: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2003: ¥1,600,000 (Direct Cost: ¥1,600,000)
KeywordsGierer-Meinhardt / Liesegang phenomena / Colloid growth and dissolution / the exponential laws / reaction-diffusion system / pattern formation / パルス解 / リーゼガング
Research Abstract

We have studied about structure of stable spike solutions of Gierer-Meinhardt system from the view point of pattern formation problem in reaction-diffusion system. We have been especially interested in pattern formation of Liesegang phenomena, which was discovered in 1896 by Professor Liesegang in Germany. We first made simulations of Keller-Rubinow model to verify that time law and spacing law hold and we made a mathematically rigorous proof of them by use of the model equation. Next, we noticed that Keller-Rubinow model cannot realize width of precipitation. Therefore, we improved the model equation by use of the theory of colloid growth and dissolution progressed by Professor S.Kai in Kyushu University. This is a very good model because it realizes the real chemical experiment. Especially, it realize the splitting and destroying phenomena of the ring pattern. Finally, we make a conjecture that the system has an essential instability and it causes the splitting and destroying phenomena of the ring pattern, and moreover the final pattern should be the checker board like pattern. This is a very interested result, so we talk about it in some international conferences and symposiums to report it in references in the below 11..

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (12 results)

All 2006 2005 2004 Other

All Journal Article (11 results) Publications (1 results)

  • [Journal Article] The singular limit of a problem for Liesegang bands2006

    • Author(s)
      D.Hilhorst
    • Journal Title

      Proceeding of FBP (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A Mathematical Aspect for Liesegang Phenomena in two space dimensions(空間2次元におけるリーザガング現象とその数理)2006

    • Author(s)
      大西 勇
    • Journal Title

      京都大学数理解析研究所講究録 (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] The singular limit of a problem for Liesegang bands2006

    • Author(s)
      D.Hilhorst
    • Journal Title

      Proceeding of FBP (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A mathematical aspect for Liesegang phenomena in two space dimensions2006

    • Author(s)
      I.Ohnishi
    • Journal Title

      Scientific report of KRIMS (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Fast reaction limits and Liesegang bands2005

    • Author(s)
      D.Hilhorst
    • Journal Title

      明治大学理工学部数学教室プレプリントシルーズ No.062005

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A MATHEMATICAL ASPECT FOR LIESEGANG PHENOMENA2005

    • Author(s)
      I.Ohnishi
    • Journal Title

      Proceeding of Equadiff 11 (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A MATHEMATICAL ASPECT FOR LIESEGANG PHENOMENA2005

    • Author(s)
      I.Ohnishi
    • Journal Title

      Proceeding of EQUADIFF 11(in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Fast reaction limits and Liesegang bands2005

    • Author(s)
      D.Hilhorst
    • Journal Title

      Preprint series No.062005 in Meiji Univ.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Chaotic Pulses for Discrete Reaction Diffusion Systems2005

    • Author(s)
      Y.Nishiura, D.Ueyama, T.Yanagita
    • Journal Title

      SIAM Journal on Applied Dynamical Systems (掲載決定済)

    • NAID

      120000882186

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A Mathematical Aspect for Liesegang Phenomena2004

    • Author(s)
      大西 勇
    • Journal Title

      京都大学数理解析研究所講究録 1356

      Pages: 1-26

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A Mathematical Aspect for Liesegang Phenomena2004

    • Author(s)
      I.Ohnishi
    • Journal Title

      Scientific report of KRIMS 1356

      Pages: 1-26

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Publications] 大西 勇: "A Mathematical Aspect for Liesegang Phenomena"京都大学数理解析研究所講究録. 1356. 1-26 (2004)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi