• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Characterizations of the quasi-periodicity in the quasi-crystal structure

Research Project

Project/Area Number 15540126
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKochi University

Principal Investigator

KOMATSU Kazushi  Kochi University, Faculty of Science, Associate Professor, 理学部, 助教授 (00253336)

Co-Investigator(Kenkyū-buntansha) HEMMI Yutaka  Kochi University, Faculty of Science, Professor, 理学部, 教授 (70181477)
SHIMOMURA Katsumi  Kochi University, Faculty of Science, Professor, 理学部, 教授 (30206247)
NAKANO Fumihiko  Kochi University, Faculty of Science, Associate Professor, 理学部, 助教授 (10291246)
SADAHIRO Taizo  Prefectural University of Kumamoto, Faculty of Administration, Associate Professor, 総合管理学部, 助教授 (00280454)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,400,000 (Direct Cost: ¥3,400,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsquasi-crystal / tiling / quasi-periodicity / rotational symmetry / matching rule / substitution rule / automaton / symbolic dynamics / retract / projection / シュレーディンガー方程式 / 射影法 / シュレーディンガー作用素 / スペクトル / spanning tree / タイリング空間 / 格子
Research Abstract

The summary of research results is as follows.
1.The Ammann-Beenker tilings are quasiperiodic tilings of the plane, which is constructed by using the Ammann's matching rules. We show that the Ammann-Beenker tilings can be composed by an automaton with 4 states, and note some results concerning composition sequences from the viewpoint of symbolic dynamics.
2.Under the assumption that the restriction map of the orthogonal projection to a lattice is injective, we determine when two tilings obtained by the projection method belong to the same isomorphism class. As its application we have uncountably many isomorphism classes of quasiperiodic tilings by the projection method.
3.We prove that the tangent bundle of the (2n+1)-dimensional mod 3 standard lens space is stably extendible to the (2m+1)-dimensional mod 3 standard lens space for every m=n or m>n if and only if n=0,3 or 0<n<3 $.
4.We obtain a theorem on stable unextendibility of R-vector bundles over lens space improving some results, study relations between stable extendibility and span of vector bundles over lens space, and prove that the complexification is extendible for every m>n if and only if n=0,5 or 0<n<5, and prove that the complexification of the tensor product is extendible for every m>n if and only if 0<n<13 or n=0,13,15.
5.We study the structure of the Penrose tiling constructed by the matching rule, and a substitution rule, which gives us the local configuration of the tiles, the elementary proofs of the aperiodicity, the locally isomorphic property, the uncountability and the fact that all obtained by the matching rule can be constructed via the up-down generation.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (30 results)

All 2006 2005 2004 Other

All Journal Article (24 results) Publications (6 results)

  • [Journal Article] The spectrum of the Schroedinger operators with Poisson type random potential.2006

    • Author(s)
      K.Ando, A.Iwatsuka, M.Kaminaga, F.Nakano
    • Journal Title

      Ann.Henri Poincare 7・1

      Pages: 145-160

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Extendibility and stable extendibility of vector bundles over lens spaces mod 32005

    • Author(s)
      T.Kobayashi, K.Komatsu
    • Journal Title

      Hiroshima Math. J. 35・3

      Pages: 403-412

    • NAID

      110004455825

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Homotopy groups of a generalized E(2)-local Moore spectrum at the prime three2005

    • Author(s)
      K.Shimomura, I.Ichigi
    • Journal Title

      Hiroshima Math. J. 35・1

      Pages: 125-142

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Extendibility and stable extendibility of vector bundles over lens spaces mod 32005

    • Author(s)
      T.Kobayashi, K.Komatsu
    • Journal Title

      Hiroshima Math.J. Vol.35

      Pages: 403-412

    • NAID

      110004455825

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Homotopy groups of a generalized E(2)-local Moore spectrum at the prime three2005

    • Author(s)
      K.Shimomura, I.Ichigi
    • Journal Title

      Hiroshima Math.J. Vol.35

      Pages: 125-142

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Extendibility and stable extendibility of vector bundles over lens spaces mod 32005

    • Author(s)
      T.Kobayashi, K.Komatsu
    • Journal Title

      Hiroshima Math.J. 35・3

      Pages: 403-412

    • NAID

      110004455825

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Homotopy groups of a generalized E(2)-local Moore spectrum at the prime three2005

    • Author(s)
      K.Shimomura, I.Ichigi
    • Journal Title

      Hiroshima Math.J. 35・1

      Pages: 125-142

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Extendibility and stable extendibility of vector bundles over lens spaces mod 32005

    • Author(s)
      T.Kobayashi, K.Komatsu
    • Journal Title

      Hiroshima Math.J. 35(印刷中)

    • NAID

      110004455825

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Retractions of H -spaces2005

    • Author(s)
      Y.Hemmi
    • Journal Title

      Hiroshima Math.J. 35(印刷中)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Higher homotopy commutativity and cohomology of finite H -spaces2005

    • Author(s)
      Y.Hemmi, Y.Kawamoto
    • Journal Title

      Geometry and Topology Monographs (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] The spectrum of the Schroedinger operators with Poisson type random potential2005

    • Author(s)
      K.Ando, A.Iwatsuka, M.Kaminaga, F.Nakano
    • Journal Title

      Annales Henri Poincare (発表予定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Representation of Ammann-Beenker tilings by an automaton2004

    • Author(s)
      K.Komatsu, K.Nomakuchi, K.Sakamoto, T.Tokitou
    • Journal Title

      Nihonkai Math. J. 15・2

      Pages: 109-119

    • NAID

      110001839657

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Isomorphism classes of quasiperiodic tilings by the projection method2004

    • Author(s)
      K.Komatsu, K.Sakamoto
    • Journal Title

      Nihonkai Math. J. 15・2

      Pages: 119-126

    • NAID

      110001839661

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Representation of Ammann-Beenker tilings by an automaton2004

    • Author(s)
      K.Komatsu, K.Nomakuchi, K.Sakamoto, T.Tokitou
    • Journal Title

      Nihonkai Math.J. Vol.15

      Pages: 109-118

    • NAID

      110001839657

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Isomorphism classes of quasiperiodic tilings by the projection method2004

    • Author(s)
      K.Komatsu, K.Sakamoto
    • Journal Title

      Nihonkai Math.J. Vol.15

      Pages: 119-126

    • NAID

      110001839661

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Representation of Ammann-Beenker tilings by an automaton2004

    • Author(s)
      K.Komatsu, K.Nomakuchi, K.Sakamoto, T.Tokitou
    • Journal Title

      Nihonkai Math.J. 15・2

      Pages: 109-118

    • NAID

      110001839657

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Isomorphism classes of quasiperiodic tilings by the projection method2004

    • Author(s)
      K.Komatsu, K.Sakamoto
    • Journal Title

      Nihonkai Math.J. 15・2

      Pages: 119-126

    • NAID

      110001839661

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Higher homotopy associativity of H-spaces and retractions

    • Author(s)
      Y.Hemmi
    • Journal Title

      Progress in Algebraic Topology Research, Nova Science (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The repulsion between localization centers in the Anderson model

    • Author(s)
      F.Nakano
    • Journal Title

      J. Stat. Phys. (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Higher homotopy associativity of H-spaces and retractions

    • Author(s)
      Y.Hemmi
    • Journal Title

      Progress in Algebraic Topology Research, Nova Science (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The repulsion between localization centers in the Anderson model

    • Author(s)
      F.Nakano
    • Journal Title

      J.Stat.Phys. (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Higher homotopy associativity of H-spaces and retractions

    • Author(s)
      Y.Hemmi
    • Journal Title

      Progress in Algebraic Topology Research, Nova Science (to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Higher homotopy commutativity and cohomology of finite H-spaces

    • Author(s)
      Y.Hemmi, Y.Kawamoto
    • Journal Title

      Geometry, Topology Monographs (to appear)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] The repulsion between localization centers in the Anderson model

    • Author(s)
      F.Nakano
    • Journal Title

      J.Stat.Phys. (to appear)

    • Related Report
      2005 Annual Research Report
  • [Publications] Y.Hemmi, Y.Kawamoto: "Higher homotopy commutativity of H-spaces and the permutoassociahedra"Trans.Amer.Math.Soc.. (印刷中). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] Y.Kamiya, K.Shimomura: "A relation between the Picard groups of the E(n)-local homotopy category and E(n)-based Adams spectral sequence"Contemporary Math.. (印刷中). (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] M.Kaminaga, F.Nakano: "The Landauer resistivity on quantum wires"J.Stat.Phys.. 111. 339-353 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] F.Klopp, S.Nakamura, F.Nakano, Y.Nomura: "Anderson localization for 2D discrete Schrodinger operators with random magnetic fields"Annales Henri Poincare. 4. 795-811 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] F.Nakano, Y.Nomura: "Random magnetic fields on line graphs"J.Math.Phys.. 44. 4988-5002 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] F.Nakano: "Spin of the ground state and the flux phase problem on the ring"J.Phys.A. : Math.Gen.. (印刷中). (2004)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi