• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Asymptotic behavior of an aggregating pattern of the reaction diffusion equation with the advection term

Research Project

Project/Area Number 15540128
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionUniversity of Miyazaki

Principal Investigator

TSUJIKAWA Tohru  University of Miyazaki, Faculty of Engineering, Professor, 工学部, 教授 (10258288)

Co-Investigator(Kenkyū-buntansha) SENBA Takashi  University of Miyazaki, Faculty of Engineering, Professor, 工学部, 教授 (30196985)
KABEYA Yoshitugu  University of Miyazaki, Faculty of Engineering, Associate Professor, 工学部, 助教授 (70252757)
YAGI Atsushi  Osaka University, Faculty of Engineering, Professor, 大学院・工学研究科, 教授 (70116119)
NAKAKI Tatsuyuki  Kyushu University, Faculty of Mathematics, Associate Professor, 大学院・数理学研究院, 助教授 (50172284)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2003: ¥1,900,000 (Direct Cost: ¥1,900,000)
KeywordsExponential attractor / Chemotaxis model / Singular limit Analysis / Squeezing property / 反応拡散系 / キネマティック方程式 / 進行波解 / 指数アトラクター / 走化性モデル方程式
Research Abstract

1.For the chemotaxis growth model, we show the traveling wave solution with a triple junction in the stripe domain by the numerical simulations. In order to show the existence of the solution, we first construct the approximate solution of this solution by the interface equation corresponding to the original model equation. Moreover, it can be shown die relation of the velocity of the traveling solution and the intensity of the chemotaxis.
2.For the adsorbate-induced phase transition model, we show the existence of the nonnegative global solution and exponential attractor under the periodic boundary condition in two dimensional bounded domain. Due to the appropriate choice of the functional space, we prove that the sqeezing property is hold for the dynamical system obtained from the equation.
3.For the adsorbate-induced phase transition model in the plane, we show the existence of the nonnegative global solutions under the boundary condition such that the solution tends to the constant equilibrium solution at the edge of the plane. In this situation, we can not prove the existence of the exponential attractor.
4.For the adsorbate-induced phase transition model in the bounded domain of the plane, we prove the existence of the global solutions and exponential attractor under the Newman boundary condition. By the numerical simulations, we show the hexagonal and stripe patterns and so on for the parameters in the neighborhood of the bifurcation point of constant equilibrium solution.
5.For the chemotaxis growth model, we need consider the sensitive function with the singularity at the origin from the biological view points. For the bounded domain in the plane, we prove that the solution tends to the trivial solution if the initial data is small with respect to some functional norm. Moreover, there is a nonempty omega limit set in another case.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (12 results)

All 2005 2003 Other

All Journal Article (10 results) Publications (2 results)

  • [Journal Article] Exponential attractor for an adsorbate - induced phase transition model in nonsmooth domain2005

    • Author(s)
      Y.Takei, M.Efendief, T.Tsujikawa, A.Yagi, M.Mimura
    • Journal Title

      Osaka Journal of Mathematics

    • NAID

      120007123297

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Chemotaxis and growth system with singular sensitivity function2005

    • Author(s)
      M.Aida, K.Osaki, T.Tsujikawa, A.Yagi, M.Mimura
    • Journal Title

      Journal of Nonlinear Analysis : Real World Applications 6

      Pages: 323-336

    • NAID

      120005285846

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Numerical computations and pattern formation for adsorbate - induced phase transition model2005

    • Author(s)
      Y.Takei, T.Tsujikawa, A.Yagi
    • Journal Title

      Scientiae Mathematicae Japonicae

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Global solution to a reaction diffusion phase transition system in R^22005

    • Author(s)
      Y.Takei, K.Osaki, T.Tsujikawa
    • Journal Title

      Advances Mathematical Science and Applications 14

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Exponential attractor for an adsorbate - induced phase transition model with periodic boundary conditions2005

    • Author(s)
      Y.Takei, K.Osaki, T.Tsujikawa, A.Yagi
    • Journal Title

      Differential equations and applications 4

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Exponential attractor for an adsorbate-induced phase transition model in nonsmooth domain2005

    • Author(s)
      Y.Takei, M.Efendief, T.Tsujikawa, A.Yagi, M.Mimura
    • Journal Title

      Osaka Journal of Mathematics

    • NAID

      120007123297

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Numerical computations and pattern formation for adsorbate-induced phase transition model2005

    • Author(s)
      Y.Takei, T.Tsujikawa, A.Yagi
    • Journal Title

      Scientiae Mathematicae Japonicae

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Exponential attractor for an adsorbate-induced phase transition model with periodic boundary conditions2005

    • Author(s)
      Y.Takei, K.Osaki, T.Tsujikawa, A.Yagi
    • Journal Title

      Differential equations and applications 4

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Exponential attractor for an adsorbate-induced phase transition model in nonsmooth domain2005

    • Author(s)
      Y.Takei, M.Efendief, T.Tsujikawa.A.Yagi, M.Mimura
    • Journal Title

      Osaka Journal of Mathematics

    • NAID

      120007123297

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Singular limit analysis of aggregating patterns in chemotaxis growth model2003

    • Author(s)
      T.Tsujikawa
    • Journal Title

      Kokyuroku of RIMS 13302

      Pages: 149-160

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Publications] Tohru Tsujikawa: "Singular limit analysis of aggregating patterns in chemotaxis-growth model"数理解析研究所講究録. 1330. 149-160 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Ysauhiro Takei: "Exponential attractor for an adsorbate-induced phase transition model with preiodic boundary conditions"Differential equations and applications. 4(印刷中). (2004)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi