• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on functional s of distributions and convex combinations of U-statistics

Research Project

Project/Area Number 15540130
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionKagoshima University

Principal Investigator

YAMATO Hajime  Kagoshima University, Faculty of Science, Professor, 理学部, 教授 (90041227)

Co-Investigator(Kenkyū-buntansha) NADA Koiichi  Kagoshima University, Faculty of Science, Professor, 理学部, 教授 (20018899)
KONDO Masao  Kagoshima University, Faculty of Science, Professor, 理学部, 教授 (70117505)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2004: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsU-statistic / V -statistic / convex combination / estimable parameter / 凸-結合 / エッヂワース展開 / 不変原理 / LB-統計量 / 確率分割 / 漸近展開
Research Abstract

As statistics related with a functional of distribution, V-statistic of von Mises (1947) and U-statistic of Hoeffding (1948) are well-known and have been studied by many researchers. Yamato (1977) introduced a new statistic, LB-statistic. Toda and Yamato (2001) introduced a linear combination of U-statistics (a convex combination of U-statistic), which include these three statistics.
We have studied the properties of this convex combination of U-statistics.
We evaluated large deviations of the convex combination of U-statistics, which is useful to evaluate the tail probability. In case where the kernel is degenerate, we obtained a functional limit theorem (invariance principle) of a convex combination of U-statistics.
We also obtained its Edgeworth expansion. At first we got it for the standardized statistic by the order-1 of the sample size and furthermore got it for the studentized statistic by the order -1/2 of the sample size. We also got the Edgeworth expansion for the studentized statistic by the order-1 of the sample size.
Next, we introduced a convex combination of two-sample U-statistics. This statistic has the asymptotic normality as same as the two-sample U-statistic. To see the difference between these two statistics, we got the Edgeworth expansion of convex combination of two-sample U-statistics with the order -1/2 of the sample size.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (18 results)

All 2006 2005 2004 2003 Other

All Journal Article (14 results) Publications (4 results)

  • [Journal Article] A convex combination of two-sample U-statistics2006

    • Author(s)
      Koichiro Toda
    • Journal Title

      J.Japan Statistical Society (掲載決定済み)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A convex combination of two-sample U-statistics2006

    • Author(s)
      Koichiro Toda
    • Journal Title

      J. Japan Statistical Society (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A convex combination of two-sample U-statistics2006

    • Author(s)
      Toda Koichiro
    • Journal Title

      Journal of Japan Statistical Society (掲載決定済み)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Asymptotic properties of a linear combination of U-statistics with Degenerate kernel2005

    • Author(s)
      Hajime Yamato
    • Journal Title

      J.Nonparametric Statistics 17・2

      Pages: 187-199

    • NAID

      120001391200

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Asymptotic properties of a linear combination of U-statistics with degenerate kernel2005

    • Author(s)
      Hajime Yamato
    • Journal Title

      J Nonparametric Statistics 17-2

      Pages: 187-199

    • NAID

      120001391200

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Asymptotic properties of linear combination of U-statistics with degenerate kernel2005

    • Author(s)
      Yamato Hajime
    • Journal Title

      Journal of Nonparametric Statistics 17・2

      Pages: 13-13

    • NAID

      120001391200

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Asymptotic properties of linear combinations of U-statistics with degenerate kernels2005

    • Author(s)
      Hajime Yamato
    • Journal Title

      Journal of Nonparametric Statistics 17・2

      Pages: 187-199

    • NAID

      120001391200

    • Related Report
      2004 Annual Research Report
  • [Journal Article] An Edgeworth expansion of a convex combination of U-statistics Based on studentization2004

    • Author(s)
      Hajime Yamato
    • Journal Title

      Bulletin of Informatics and Cybernetics 36・1

      Pages: 105-130

    • NAID

      120001014478

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] An Edgeworth expansion of a convex combination of U-statistics based on studentization.2004

    • Author(s)
      Hajime Yamato
    • Journal Title

      Bulletin of Informatics and Cybernetics 36-1

      Pages: 105-130

    • NAID

      120001014478

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] An Edgeworth expansion of a convex combination of U-statistics based on studentization2004

    • Author(s)
      Hajime Yamato
    • Journal Title

      Bulletin of Informatics and Cybernetics 36・1

      Pages: 105-130

    • NAID

      120001014478

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Large deviation for linear combination of U-statistics2003

    • Author(s)
      Hajime Yamato
    • Journal Title

      Scientiae Mathematicae Japonicae 57・2

      Pages: 207-215

    • NAID

      10011059605

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Edgeworth expansions of some statistics including the LB-statistics and V-statistic2003

    • Author(s)
      Hajime Yamato
    • Journal Title

      J.Japan Statistical Society 33・1

      Pages: 77-94

    • NAID

      110003144455

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Large deviations for a linear combination of U-statistics2003

    • Author(s)
      Hajime Yamato
    • Journal Title

      Scientiae Mathematicae Japonicae 57-2

      Pages: 207-215

    • NAID

      10011059605

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Edgeworth expansions of some statistics including the LB-statistic and V -statistic2003

    • Author(s)
      Hajime Yamato
    • Journal Title

      J. Japan Statistical Society 33-1

      Pages: 77-94

    • NAID

      110003144455

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Publications] Yamato Hajime: "Large deviations for a linear combination of U-statistics"Scientiae Mathematicae Japonicae. 57・2. 207-215 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Yamato Hajime: "Edgeworth expansions of some statistics including the LB-statistic and V-statistic"Journal of the Japan Statistical Society. 33・1. 77-94 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] Sibuya Masaaki: "Pitman's model for random partitions"Advances in statistical inferential Methods : Theory and Applications(Proceedings). 219-232 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] 大和 元: "ピットマン確率分割と関連する話題"統計数理. 51・2. 351-372 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi