• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Harmonic Analysis Homogeneous Spaces and its Applications

Research Project

Project/Area Number 15540182
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of the Air

Principal Investigator

KUMAHARA Keisaku  The University of the Air, Faculty of Liberal Arts, Professor, 教養学部, 教授 (60029486)

Co-Investigator(Kenkyū-buntansha) KOIZUMI Shin  Onomichi University, Faculty of Economy, Management and Information Sciences, Associate Professor, 経済情報学部, 助教授 (90205310)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,600,000)
Fiscal Year 2005: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 2004: ¥700,000 (Direct Cost: ¥700,000)
Fiscal Year 2003: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsFourier transform / homogeneous space / sampling theorem / Radon transform / reconstruction theorem / Riemannian symmetric space / Fourier-Jacobi series / complex semisimple Lie group / フーリエ・ヤコビ変換 / ペセンソンのサンプリング公式 / 不確定性原理 / 対称空間 / リー群 / ユニタリ群 / リーマン対称空関 / フーリエ・ヘルガソン変換 / 実双曲空間 / ハリシュ・チャンドラのc関数
Research Abstract

We studied the properties of the Fourier transforms on homogeneous spaces of Lie groups. Especially we focused our attention on the sampling theorem of Shannon and its generalizations. The harmonic analysis on homogeneous spaces has developed as extension of the classical Fourier analysis on a real number line or a plane. The Plancherel theorem and the Paley-Wiener theorem have built the important flow in it. These theorems characterize the images by the Fourier transform of some function spaces. In the case of the real line, the Paley-Wiener theorem can be considered from its self-duality to be the theorem by which functions with Fourier transform image of compact support, that is, band-limited functions, are characterized. Such a function is restriction to the real axis of an exponential type entire function. It is the Shannon sampling theorem that the values in all points of such function are with the values at the discrete points on a real axis. This theorem has played the decisive role in communication theory. In this research, we mainly dealt with the problem of the econstruction of the function by the sampling of the Radon conversion on symmetrical spaces.
We obtained the following results :
(1)A sampling formula on the sphere. (2)A sampling formula for Radon transform on the real hyperbolic space, (3)A reconstruction formula on real hyperbolic space using discrete samples of Radon transform, (4)A sampling formula on the complex sphere, (5)A sampling formula for Radon transform on complex hyperbolic space, (6)A reconstruction formula on complex hyperbolic spaces using discrete samples of Radon transform, (7)A reconstruction formula on Riemannian symmetric spaces by using discrete samples of Radon transform, (8)A sampling formula for the Fourier-Jacobi series, (9)A sampling formula on complex semisimple Lie groups.

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (20 results)

All 2006 2005 2004 Other

All Journal Article (11 results) Book (8 results) Publications (1 results)

  • [Journal Article] Analogues of sampling theorems for some homogeneous spaces2006

    • Author(s)
      Mitsuhiko Ebata
    • Journal Title

      Hiroshima Mathematical Journal. 36-1

      Pages: 125-140

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On sampling formulas on symmetric spaces2006

    • Author(s)
      Mitsuhiko Ebata
    • Journal Title

      Journal of Fourier Analysis and Applications 12-1

      Pages: 1-15

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Analogues of sampling theorems for some homogeneous spaces2006

    • Author(s)
      Mitsuhiko Ebata
    • Journal Title

      Hiroshima Mathematical Journal 36-1

      Pages: 125-140

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] A Sampling theorem on symmetric spaces2006

    • Author(s)
      M.Ebata, M.Eguchi, S.Koizumi, K.Kumahara
    • Journal Title

      Journal of Fourier Analysis and Applications (Online First:http://dx.doi.org/10.1007/s00041-005-4014-0)

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Analogues of sampling theorems for some homogeneous space2006

    • Author(s)
      M.Ebata, M.Eguci, S.Koizumi, K.Kumahara
    • Journal Title

      Hiroshima Mathematical Journal 36-1

      Pages: 125-140

    • NAID

      110004455839

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 等質空間上のフーリエ変換-不確定性原理を巡って-2005

    • Author(s)
      熊原啓作
    • Journal Title

      津田塾大学数学・計算機科学研究所報 26

      Pages: 203-221

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Fourier transforms on homoge neous spaces - Uncertainty Principle - (Japanese)2005

    • Author(s)
      Keisaku Kumahara
    • Journal Title

      Bulletin of the Institute Mathematics and Computer Science, Tsuda College 26

      Pages: 203-221

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] 等質空間上のフーリエ変換 不確定性原理を巡って2005

    • Author(s)
      熊原啓作
    • Journal Title

      津田塾大学数学・計算機科学研究所報 26

      Pages: 203-221

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Radon transforms and sampling theorems2004

    • Author(s)
      Keisaku Kumahara
    • Journal Title

      表現論シンポジウムSymposium on Representation Theory 報告集 2004

      Pages: 141-149

    • NAID

      130008004841

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Radon transforms and sampling theorem2004

    • Author(s)
      Keisaku Kumahara
    • Journal Title

      Proceedings of the Symposium on Representation Theory 2004

      Pages: 141-149

    • NAID

      130008004841

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Radon transforms and sampling theorems2004

    • Author(s)
      Keisaku Kumahara
    • Journal Title

      Symposium on Representation Thory 2004

      Pages: 141-149

    • NAID

      130008004841

    • Related Report
      2004 Annual Research Report
  • [Book] 初歩からの積分2006

    • Author(s)
      熊原啓作
    • Total Pages
      231
    • Publisher
      放送大学教育振興会
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] Calclus for the Beginners2006

    • Author(s)
      Keisaku Kumahara, et al.
    • Total Pages
      231
    • Publisher
      Housoudaigaku Kyouiku Shinkokai
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 初歩からの微積分2006

    • Author(s)
      熊原啓作, 押川元重
    • Total Pages
      231
    • Publisher
      放送大学教育振興会
    • Related Report
      2005 Annual Research Report
  • [Book] 改訂版 数理システム科学2005

    • Author(s)
      熊原啓作
    • Total Pages
      338
    • Publisher
      放送大学教育振興会
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] Mathematical System Theory (Revised Edition)2005

    • Author(s)
      Keisaku Kumahara, et al.
    • Total Pages
      338
    • Publisher
      Housoudaigaku Kyouiku Shinkokai
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 改訂版 数理システム科学2005

    • Author(s)
      熊原啓作, 砂田利一
    • Total Pages
      338
    • Publisher
      放送大学教育振興会
    • Related Report
      2004 Annual Research Report
  • [Book] 複素数と関数2004

    • Author(s)
      熊原啓作
    • Total Pages
      287
    • Publisher
      放送大学教育振興会
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] Complex Numbers and Functions2004

    • Author(s)
      Keisaku Kumahara
    • Total Pages
      287
    • Publisher
      Housoudaigaku Kyouiku Shinkokai
    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Publications] 熊原啓作: "多変数の微積分"放送大学教育振興会. 255 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi