• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Exact WKB analysis of microdifferential equations of infinite order

Research Project

Project/Area Number 15540190
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKINKI UNIVERSITY

Principal Investigator

AOKI Takashi  KINKI UNIVERSITY, SCHOOL OF SCIENCE AND ENGINEERING, PROFESSOR, 理工学部, 教授 (80159285)

Co-Investigator(Kenkyū-buntansha) IZUMI Shuzo  KINKI UNIVERSITY, SCHOOL OF SCIENCE AND ENGINEERING, PROFESSOR, 理工学部, 教授 (80025410)
OHNO Yasuo  KINKI UNIVERSITY, SCHOOL OF SCIENCE AND ENGINEERING, ASSOCIATE PROFESSOR, 理工学部, 助教授 (70330230)
NAKAMURA Yayoi  KINKI UNIVERSITY, SCHOOL OF SCIENCE AND ENGINEERING, LECTURER, 理工学部, 講師 (60388494)
YAMAZAKI Susumu  NIHON UNIVERSITY, FACULTY OF SCIENCE AND TECHNOLOGY, LECTURER, 理工学部, 講師 (00349953)
Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,500,000 (Direct Cost: ¥3,500,000)
Fiscal Year 2005: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2004: ¥1,100,000 (Direct Cost: ¥1,100,000)
Fiscal Year 2003: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsmicrodifferential equations / equations of infinite order / exact WKB analysis / connection problems / Stokes curves / turning points / multiple zeta values / hypergeometric functions / WKB解 / 局処理論
Research Abstract

The purpose of this project was to establish the fundamental theory of the exact WKB analysis for microdifferential equations of infinite order and develop its applications. We have obtained the following results :
(1)We introduced the notion of microdifferential operators of WKB type and we showed that for operators of WKB type, we can construct exact WKB solutions. The notions of turning points and Stokes curves can be defined as well as the case of differential operators with a large parameter. We proved that in a neighborhood of a turning point, such an operator can be decomposed into the product of two operators and the equation corresponding to the operator is reduced to an equation of finite order. Thus local theory for WKB solutions is exactly the same as in the case of equations of finite order. Thus, if the turning point is simple, then the equation is reduced to the Airy equation. We have found that, at least locally, the order of the equation is irrelevant and that the degre … More e of the turning point is essential for the connection problem of the WKB solutions.
(2)As an application of connection problems of differential equations, we have obtained new families of relations that hold among multiple zeta values. There are two ways of defining multiple zeta values. Both are defined by the Euler sum of products of reciprocals of powers of positive integers : one is defined by sums over indices of powers with strict inequalities and another with non-strict inequalities. We constructed a generating function made of the latter and showed that the function is a unique solution of an inhomogeneous ordinary differential equation of Fuchsian type. Solving this equation directly by using power series or integration, we obtained some families of relations of multiple zeta values. That is, we showed that sums of multiple zeta values with non-strict inequalities, which we call multiple zeta-star values, with fixed weight and height can be expressed as a rational multiple of Riemann zeta values.
(3)To have the complete description of the Stokes geometry of a given higher-order differential equation is very difficult problem in general. We found that the notion of virtual turning points is crucial to understand the Stokes geometry and the connection problem for the equation. For example, an equation of higher order with a deformation parameter, we have a family of Stokes curves. We know that not only the Stokes curves but also the so called new Stokes curves are indispensable to describe the Stokes geometry. If the deformation parameter changes, the Stokes geometry also changes and we observed that sometimes the role of ordinary Stokes curves and new Stokes curves interchange each other. This phenomenon can be well understood by using the notion of virtual turning points. Less

Report

(4 results)
  • 2005 Annual Research Report   Final Research Report Summary
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (30 results)

All 2005 2004 Other

All Journal Article (24 results) Book (3 results) Publications (3 results)

  • [Journal Article] Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations2005

    • Author(s)
      T.Aoki, T.Kawai, S.Sasaki, A.Shudo, Y.Takei
    • Journal Title

      Journal of Physics A : Mathematical and General 38

      Pages: 3317-3336

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Sum relations for multiple zeta values and connection formulas of the Gauss hypergeometric functions2005

    • Author(s)
      T.Aoki, Y.Ohno
    • Journal Title

      Publ. RIMS Kyoto Univ. 41

      Pages: 11-47

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Hyperfunction solutions to Fuchsian hyperboloic systems2005

    • Author(s)
      S.Yamazaki
    • Journal Title

      J. Math. Sci, Univ. Tokyo 12

      Pages: 192-209

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On global aspects of exact WKB analysis of operators admitting infinitely many phases2005

    • Author(s)
      T.Aoki, T.Kawai, T.Koike, Y.Takei
    • Journal Title

      Analyzable Functions and Applications, Contemporary Mathematics Volume 373, AMS

      Pages: 11-47

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Sum relations for multiple zeta values and connection formulas of the Gauss hypergeometric functions2005

    • Author(s)
      T.Aoki, Y.Ohno
    • Journal Title

      Publ.RIMS Kyoto Univ. 41

      Pages: 329-337

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Annual Research Report 2005 Final Research Report Summary
  • [Journal Article] Sum relations for multiple zeta values2005

    • Author(s)
      Y.Ohno
    • Journal Title

      Zeta functions, topology and quantum physics, Dev.Math. (Springer, New York) 14

      Pages: 131-144

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Computational aspects of Grothendieck local residues2005

    • Author(s)
      S.Tajima, Y.Nakamura
    • Journal Title

      Seminaires et Congres, SMF 10

      Pages: 287-305

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Algebraic local cohomology classes attached to quasi-homogeneous hypersurface isolated singularities2005

    • Author(s)
      S.Tajima, Y.Nakamura
    • Journal Title

      Publ.RIMS, Kyoto Univ. 41

      Pages: 1-10

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Hyperfunction solutions to Fuchsian hyperbolic systems2005

    • Author(s)
      S.Yamazaki
    • Journal Title

      J.Math.Sci, Univ.Tokyo 12

      Pages: 192-209

    • NAID

      110001901868

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On global aspects of exact WKB analysis of operators admitting infinitely many phases2005

    • Author(s)
      T.Aoki, T.Kawai, T.Koike, Y.Takei
    • Journal Title

      Contemporary Mathematics 373

      Pages: 11-47

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Computational aspects of Grothendieck local residues2005

    • Author(s)
      S.Tajima, Y.Nakamura
    • Journal Title

      Semin.Congr., Soc.Math.France, Paris 10

      Pages: 287-305

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Unimodal singularities and differential operators2005

    • Author(s)
      Y.Nakamura, S.Tajima
    • Journal Title

      Semin.Congr., Soc.Math.France, Paris 10

      Pages: 191-208

    • Related Report
      2005 Annual Research Report
  • [Journal Article] Hyperfunction solutions to Fuchsian hyperbolic systems2005

    • Author(s)
      S.Yamazaki
    • Journal Title

      J.Math.Sci.Univ.Tokyo 12

      Pages: 191-209

    • NAID

      110001901868

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On the exact WKB analysis of operators admitting infinitely many phases2004

    • Author(s)
      T.Aoki, T.Kawai, T.Koike, Y.Takei
    • Journal Title

      Advances in Mathematics 181

      Pages: 165-189

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The exact steepest descent method ‥ a new steepest descent method based on the exact WKB analysis2004

    • Author(s)
      T.Aoki, T.Kawai, T.Koike, Y.Takei
    • Journal Title

      Advanced Studies in Pure Mathematics 42

      Pages: 45-61

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the exact WKB analysis of microdifferential operators of WKB type2004

    • Author(s)
      T.Aoki, T.Kawai, T.Koike, Y.Takei
    • Journal Title

      Annales de l'Institut Fourier, Grenoble 54

      Pages: 1393-1421

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary 2004 Annual Research Report
  • [Journal Article] The exact steepest descent method -- a new steepest descent method based on the exact WKB analysis2004

    • Author(s)
      T.Aoki, T.Kawai, Y.Takei
    • Journal Title

      Advanced Studies in Pure Mathematics 42

      Pages: 45-61

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the exact WKB analysis of microdifferential operators of WKB type2004

    • Author(s)
      T.Aoki, T.Kawai, T.Koike, Y.Takei
    • Journal Title

      Annales de l'Institut Fourier, Grenoble 54-5

      Pages: 1393-1421

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] On the dual space of the Tjurina algebra attached to a semiquasihomogeneous isolated singularity2004

    • Author(s)
      Y.Nakamura, S.Tajima
    • Journal Title

      Banach Center Publications 65

      Pages: 261-272

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] Microlocal boundary value problem for regular specializable systems2004

    • Author(s)
      S.Yamazaki
    • Journal Title

      J.Math.Soc.Japan 56

      Pages: 1109-1129

    • NAID

      10013753448

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Journal Article] The exact steepest descent method-a new steepest descent method based on the exact WKB analysis2004

    • Author(s)
      T.Aoki, T.Kawai, Y.Takei
    • Journal Title

      Advanced Studies in Pure Mathematics 42

      Pages: 45-61

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Microlocal boundary value problem for regular-specializable system2004

    • Author(s)
      S.Yamazaki
    • Journal Title

      Journal of the Mathematical Society of Japan 56

      Pages: 1109-1129

    • NAID

      10013753448

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On the dual space of the Tjurina algebra attached to a semi quasihomogeneous isolated singularity2004

    • Author(s)
      S.Tajima, Y.Nakamura
    • Journal Title

      Banach Center publications 65

      Pages: 261-272

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On weighted-degrees for algebraic local cohomologies associated with semiquasihomogeneous singularities

    • Author(s)
      Y.Nakamura, S.Tajima
    • Journal Title

      Proceedings of the third Franco-Japanese symposium (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] Zeta Functions, Topology and Quantum Physics2005

    • Author(s)
      T.Aoki, S.Kanemitsu, M.Nakahara, Y.Ohno Eds.
    • Total Pages
      219
    • Publisher
      Springer
    • Related Report
      2005 Annual Research Report
  • [Book] 超函数・FBI変換・無限階疑微分作用素2004

    • Author(s)
      青木貴史, 片岡清臣, 山崎晋
    • Total Pages
      313
    • Publisher
      共立出版
    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2005 Final Research Report Summary
  • [Book] 超函数・FBI変換・無限階擬微分作用素(現代数学の潮流)2004

    • Author(s)
      青木貴史, 片岡清臣, 山崎 晋
    • Total Pages
      313
    • Publisher
      共立出版
    • Related Report
      2004 Annual Research Report
  • [Publications] M.Hoffman, Y.Ohno: "Relations of multiple zeta values and their algebraic expression"Journal of Algebra. 262. 332-347 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Aoki, T.Kawai, T.Koike, Y.Takei: "On the WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. 181. 165-189 (2004)

    • Related Report
      2003 Annual Research Report
  • [Publications] T.Aoki, Y.Ohno: "Sum relations for multiple zeta values and connection formulas for the Gauss hypergeometric functions"Publications of RIMS. (発表予定).

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi