• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the analysis of blowup phenomena for a nonlinear parabolic equation

Research Project

Project/Area Number 15540199
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Global analysis
Research InstitutionTokyo Gakugei University

Principal Investigator

MIZOGUCHI Noriko  Tokyo Gakugei University, Education, Assistant professor, 教育学部, 助教授 (00251570)

Co-Investigator(Kenkyū-buntansha) YANAGIDA Eiji  Tohoku University, Mathematics, Professor, 大学院・理学研究科, 教授 (80174548)
Project Period (FY) 2003 – 2004
Project Status Completed (Fiscal Year 2004)
Budget Amount *help
¥3,600,000 (Direct Cost: ¥3,600,000)
Fiscal Year 2004: ¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 2003: ¥2,000,000 (Direct Cost: ¥2,000,000)
Keywordssemilinear heat equation / blowup / incomplete blowup / continuation of solution / backward self-similar solution / 半線形放物型方程式 / 爆発集合 / Neumann境界条件 / supercritical / 逆向き自己相似
Research Abstract

In this research, we investigated a blowup problem for a semilinear diffusion equation with power nonlinerity. The blowup rate for the equation under the Neumann boundary condition or the Dirichlet boundary condition in a non-convex domain is considered. A well-lnown result due to Giga Kohn cannot be applied to these cases, so we showed the blowup is of type I making use of Liouville type theorem. Here a solution of the equation is said to exhibit the type I blowup if the blowup rate is as same as that of solutions to the corresponding ordinary equation. Next, the 1 location of the blowup set of solutions to the Cauchy-Neumann problem is described by the property of the domain in the case of large diffusion. We also studied the continuation after blowup for supercritical exponent in the Sobolev sense. Solutions blowing up in finite time and being a classical solution for all time after blowup with various behaviors as time tends to infinity. Moreover, we got a solution which blows up in finite time and becomes regular immediately after the blowup time and blows up again.

Report

(3 results)
  • 2004 Annual Research Report   Final Research Report Summary
  • 2003 Annual Research Report
  • Research Products

    (38 results)

All 2005 2004 2003 Other

All Journal Article (33 results) Publications (5 results)

  • [Journal Article] A Liouville property and quasiconvergence for a semilinear heat equation2005

    • Author(s)
      P.Polacik, E.Yanagida
    • Journal Title

      J.Diff.Eqs. 208

      Pages: 194-214

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] 非線形熱方程式の爆発問題について2004

    • Author(s)
      N.Mizoguchi, K.Ishige
    • Journal Title

      数学 第56巻第2号

    • NAID

      10013123728

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Nonstabilizing solutions and grow-up set for a supercritical semilinear diffusion equation2004

    • Author(s)
      P.Polacik, E.Yanagida
    • Journal Title

      Diff.Int.Eqs. 17

      Pages: 535-548

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Uniqueness and profile of solutions for a superlinear elliptic equation2004

    • Author(s)
      Y.Kabeya, E.Yanagida
    • Journal Title

      Adv.Diff.Eqs. 9

      Pages: 771-796

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Grow-up Rate of Solutions for a Supercritical Semilinear Diffusion Equation2004

    • Author(s)
      M.Fila, M.Winkler, E.Yanagida
    • Journal Title

      J.Diff.Eqs. 205

      Pages: 365-389

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] On the blowup problem for a Nonlinear heat equation2004

    • Author(s)
      Noriko Mizoguchi, K.Ishige
    • Journal Title

      Mathematics

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Nonstabilizing solutions and grow up set for a supercritical semilinear diffusion equation2004

    • Author(s)
      P.Polacik, E.Yanagida
    • Journal Title

      Diff.Int.Eqs. 17

      Pages: 535-548

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Blowup rate of solutions for a semilinear heat equation with the Dirichlet boundary condition2003

    • Author(s)
      N.Mizoguchi
    • Journal Title

      Asymptotic Analysis 35

      Pages: 91-112

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition2003

    • Author(s)
      N.Mizoguchi
    • Journal Title

      J.Differential Equations 193

      Pages: 212-238

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Blow-up behavior for semilinear heat equations with Neumann boundary conditions2003

    • Author(s)
      N.Mizoguchi, K.Ishige
    • Journal Title

      Differential Integral Equations 16

      Pages: 663-690

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Location of blow-up set for a semilinear parabolic equation with large diffusion2003

    • Author(s)
      N.Mizoguchi, K.Ishige
    • Journal Title

      Math.Ann. 327

      Pages: 487-511

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] The Eckhaus and zigzag instability criteria in gradient/skew-gradient dissipative systems2003

    • Author(s)
      M.Kuwamura, E.Yanagida
    • Journal Title

      Physica D 175

      Pages: 185-195

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] A stability criterion for stationary curves to the curvature-driven motion with a triple junction2003

    • Author(s)
      R.Ikota, E.Yanagida
    • Journal Title

      Differential and Integral Equations 16

      Pages: 707-726

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] A remark on stable subharmonic solutions of time-periodic reaction-diffusion equations2003

    • Author(s)
      H.Yagisita, E.Yanagida
    • Journal Title

      J.Math.Anal.Appl. 286

      Pages: 795-803

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Recent topics on nonlinear partial differential equations : Structure of radial solutions for semilinear elliptic equations2003

    • Author(s)
      E.Yanagida, S.Yotsutani
    • Journal Title

      AMS Translations Ser.2, Selected Papers on Analysis and Differential Equations 211

      Pages: 121-137

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Annual Research Report 2004 Final Research Report Summary
  • [Journal Article] Blowup rate of solutions for a semilinear heat equation with the Dirichlet boundary condition2003

    • Author(s)
      Noriko Mizoguchi
    • Journal Title

      Asymptotic Analysis 35

      Pages: 91-112

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition2003

    • Author(s)
      Noriko Mizoguchi
    • Journal Title

      J.Differential Equations 193

      Pages: 212-238

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition2003

    • Author(s)
      Noriko Mizoguchi, K.Ishige
    • Journal Title

      Differential Integral Equations 16

      Pages: 663-690

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Location of blowup set for a semilinear parabolic equation with large diffusion2003

    • Author(s)
      Noriko Mizoguchi, K.Ishige
    • Journal Title

      Math.Ann. 327

      Pages: 487-511

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Recent topics on nonlinear partial differential equations : Structure of radial solutions for semilinear elliptic equations2003

    • Author(s)
      E.Yanagida, S.Yotsutani
    • Journal Title

      AMS Translations Ser. 211

      Pages: 121-137

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Type II blowup for a semilinear heat equation

    • Author(s)
      N.Mizoguchi
    • Journal Title

      Adv.Differential Equations (in press)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Multiple blowup of solutions for a semilinear heat equation

    • Author(s)
      N.Mizoguchi
    • Journal Title

      Math.Ann (to appear)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Various behaviors of solutions for a semilinear heat equation after blowup

    • Author(s)
      N.Mizoguchi
    • Journal Title

      J.Functional Analysis (in press)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity

    • Author(s)
      N.Mizoguchi
    • Journal Title

      J.Differential Equations (in press)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Type II blowup for a semilinear heat equation

    • Author(s)
      Noriko Mizoguchi
    • Journal Title

      Adv.Differential Equations (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Multiple blowup of solutions for a semilinear heat equation

    • Author(s)
      Noriko Mizoguchi
    • Journal Title

      Math.Ann (to appear)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Various behaviors of solutions for a semilinear heat equation after blowup

    • Author(s)
      Noriko Mizoguchi
    • Journal Title

      J.Functional Analysis (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity

    • Author(s)
      Noriko Mizoguchi
    • Journal Title

      J.Differential Equations (in press)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] A Liouville property and quasiconvergence for a semilinear heat equation

    • Author(s)
      P.Polacik, E.Yanagida
    • Journal Title

      J.Diff.Eqs.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      2004 Final Research Report Summary
  • [Journal Article] Type II blowup for a semilinear heat equation

    • Author(s)
      N.Mizoguchi
    • Journal Title

      Adv.Differential Equations (in press)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Multiple blowup of solutions for a semilinear heat equation

    • Author(s)
      N.Mizoguchi
    • Journal Title

      Math.Ann. (to appear)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Various behaviors of solutions for a semilinear heat equation after blowup

    • Author(s)
      N.Mizoguchi
    • Journal Title

      J.Functional Analysis (in press)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity

    • Author(s)
      N.Mizoguchi
    • Journal Title

      J.Differential Equations (in press)

    • Related Report
      2004 Annual Research Report
  • [Publications] K.Ishige, N.Mizoguchi: "Location of blow-up set for a semilinear parabolic equation with large diffusion"Math.Ann.. 327. 487-511 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] K.Ishige, N.Mizoguchi: "Blow-up behavior for semilinear heat equations with Neumann boundary conditions"Differential Integral Equations. 16. 663-690 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] N.Mizoguchi: "Blowup rate of solutions for a semilinear heat equation with the Neumann boundary condition"J.Differential Equations. 193. 212-238 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] N.Mizoguchi: "Blowup rate of solutions for a semilinear heat equation with the Dirichlet boundary condition"Asymptotic Analysis. 35. 91-112 (2003)

    • Related Report
      2003 Annual Research Report
  • [Publications] N.Mizoguchi: "Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity"J.Differential Equations. (to appear).

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi