Research Project
Grant-in-Aid for Young Scientists (B)
ホイン(Heun)の方程式とは、リーマン球面上に確定特異点を4点もつフックス型の微分方程式の標準形であり、これを調べることはBC_1型Inozemtsev模型という量子力学の模型を調べることと等価であることが知られている。確定特異店が3点の場合は、数学や物理において基本的な対象であるガウスの超幾何微分方程式と対応している。研究代表者は、ホインの方程式に対してHermite-Krichever仮説法という手法を発展させた。これにより、モノドロミーを楕円函数によって表示する方法が確立され、超楕円積分によるモノドロミーの表示式とあわせることで、超楕円積分と楕円積分を結ぶ公式を導き出す機構が解明され、いくつかの具体的な新しい公式を得ることができた。ここで述べたことは「研究発表」に記した論文にて発表したことである。また、ダルブー変換というものやそれを拡張したものを通じて等モノドロミーなホインの方程式の対たちを組織的に導出することができた。さらに、ダルブー変換や拡張されたものを合成することによって、有限帯ポテンシャルに関連する奇数階の微分作用素の新しい構成法を与えることにも成功した。ところで、ホインの方程式における従来のいくつかの結果を、さらに見かけの特異点を付加した微分方程式に対しても拡張することに成功した。これの応用として、パンルベ方程式の2パラメータ解を求める新しい方法を開発した。別の応用として、新たな有限帯ポテンシャルを発見することができた。
All 2005 2004 Other
All Journal Article (3 results) Publications (2 results)
Communications in Mathematical Physics 258.2
Pages: 367-403
Electron.J.Differential Equations 15
Pages: 1-30
J.Nonlinear Math.Phys 11
Pages: 21-46