• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

代数曲線を用いた擬似乱数系列および誤り訂正符号の構成とその応用に関する研究

Research Project

Project/Area Number 15760286
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Communication/Network engineering
Research InstitutionKinki University (2005)
Yatsushiro National College of Technology (2003-2004)

Principal Investigator

戒田 高康  近畿大学, 産業理工学部, 特任講師 (40290837)

Project Period (FY) 2003 – 2005
Project Status Completed (Fiscal Year 2005)
Budget Amount *help
¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 2005: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2004: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 2003: ¥1,200,000 (Direct Cost: ¥1,200,000)
Keywords代数曲線 / 擬似乱数系列 / 誤り訂正符号 / 線形複雑度 / 楕円曲線 / 周期系列 / 巡回符号 / 最小距離 / 代数幾何符号 / shift限界 / Hartmann-Tzeng限界 / 有限環上の周期系列 / 有理点
Research Abstract

符号理論の分野においては、代数幾何符号などでも用いられている下界であるSchaub限界やSchaub-Plus限界を求める手法である定義集合より求めることで、巡回符号における最小距離の下界としてよく知られているBCH限界、Hartmann-Tzeng限界、Roos限界やshift限界の値と比較しそれらの関係与えた。本研究成果は、巡回符号の復号法に応用することでより性能の良い誤り訂正符号の構成に寄与すると思われる。
擬似乱数系列に分野においては、有限体上の2元べき乗周期系列におけるk誤り線形複雑度の履歴に関する高速計算法であるLauder-Paterson法を一般の有限体上のべき乗周期系列へ拡張した。これにより、非2元のべき乗周期系列に対しても、より高速にk誤り線形複雑度の履歴の計算が可能となった。また、2元べき乗周期系列におけるk誤り線形複雑度の履歴のうち、非常に典型的な履歴を持ち1と0の分布が半分であるバランス2元べき乗周期系列に関する個数やそのような擬似乱数系列の構成法を示した。さらに、具体的に楕円曲線上の有理点を用いて、周期も持った2元系列および非2元系列を構成した。特に、2元周期系列に対しては、それらの分布、線形複雑度、自己相関特性などの乱数性の評価も行った。
これらの研究成果は、現代の暗号システムで欠かすことの出来ない擬似乱数系列の構成や評価に用いることで、より高速で信頼性の高い暗号システム構成に寄与すると思われる。

Report

(3 results)
  • 2005 Annual Research Report
  • 2004 Annual Research Report
  • 2003 Annual Research Report
  • Research Products

    (9 results)

All 2005 2004 Other

All Journal Article (8 results) Publications (1 results)

  • [Journal Article] A typical profile of the k-error linear complexity for balanced binary sequences with periodic 2^n2005

    • Author(s)
      Takayasu Kaida
    • Journal Title

      電子情報通信学会英文論文誌 E88-A

      Pages: 311-313

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On generalized Lauder-Paterson algorithm and profiles of k-error linear complexity for exponent periodic sequences2005

    • Author(s)
      Takayasu Kaida
    • Journal Title

      Lecture Note in Computer Science 3486

      Pages: 166-178

    • Related Report
      2005 Annual Research Report
  • [Journal Article] On linear complexity and minimum distance for cyclic codes by defining sequence with unknown elemnts2005

    • Author(s)
      Junru Zhneg, Takayasu Kaida
    • Journal Title

      第2回系列設計とその通信への応用に関するワークショップ予稿集

      Pages: 55-58

    • Related Report
      2005 Annual Research Report
  • [Journal Article] 有限体上の代数曲線における周期系列の構成について2005

    • Author(s)
      戒田 高康
    • Journal Title

      電子情報通信学会情報セキュリティ研究会技術報告書 ISEC2005-102

      Pages: 25-28

    • NAID

      110004018560

    • Related Report
      2005 Annual Research Report
  • [Journal Article] A typical profile of the k-error linear complexity for balanced binary sequences with period 2^n2005

    • Author(s)
      Takayasu Kaida
    • Journal Title

      IEICE Transactions on Fundamentals E88-A, No.1

      Pages: 311-313

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On the generalized Lauder-Paterson algorithm and profiles of the k-error linear complexity for exponent periodic sequences2005

    • Author(s)
      Takayasu Kaida
    • Journal Title

      Lecture Note in Computer Science (未定)

    • Related Report
      2004 Annual Research Report
  • [Journal Article] A simple improvement of the Hartmann-Tzeng bound2004

    • Author(s)
      Takayasu Kaida
    • Journal Title

      Proc.of International Symposium on Information Theory and its Applications 2004

      Pages: 812-816

    • Related Report
      2004 Annual Research Report
  • [Journal Article] On the generalized Lauder-Paterson algorithm and profiles of the k-error linear complexity over GF(3) with period 92004

    • Author(s)
      Takayasu Kaida
    • Journal Title

      Proc.of International Conference on Sequences and their Applications 2004

      Pages: 44-48

    • Related Report
      2004 Annual Research Report
  • [Publications] T.Moriuchi, S.Uehara, T.Kaida, K.Imamura: "Linear complexities of periodic sequences obtained from sequences over Z_4 and Z_8 by one-symbol substitution"電気情報通信学会英文論文誌A. E86-A, No.5. 1285-1293 (2003)

    • Related Report
      2003 Annual Research Report

URL: 

Published: 2003-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi