In-situ multiple measurements for integrated elucidation of lithium/oxygen transport/reaction phenomena and battery performance improvement
Project/Area Number |
15H02347
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Energy engineering
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
植村 豪 東京工業大学, 工学院, 特任准教授 (70515163)
河村 雄行 岡山大学, 環境生命科学研究科, 教授 (00126038)
|
Project Period (FY) |
2015-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥43,940,000 (Direct Cost: ¥33,800,000、Indirect Cost: ¥10,140,000)
Fiscal Year 2019: ¥5,850,000 (Direct Cost: ¥4,500,000、Indirect Cost: ¥1,350,000)
Fiscal Year 2018: ¥5,720,000 (Direct Cost: ¥4,400,000、Indirect Cost: ¥1,320,000)
Fiscal Year 2017: ¥15,470,000 (Direct Cost: ¥11,900,000、Indirect Cost: ¥3,570,000)
Fiscal Year 2016: ¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2015: ¥12,220,000 (Direct Cost: ¥9,400,000、Indirect Cost: ¥2,820,000)
|
Keywords | リチウム空気電池 / 熱工学 / エネルギー生成・変換 |
Outline of Final Research Achievements |
The lithium-air battery is the secondary battery with the largest theoretical capacity. However, high rate discharge required for practical use cannot be realized. Because the low oxygen diffusivity in the electrolyte limits the discharge performance. In this study, low energy X-ray CT, XRD, and microfiber type oxygen sensor are used to elucidate and improve the oxygen transport and reaction phenomena in the cathode. As a result, it was clarified that sufficient oxygen was not transported into the deep part of the cathode. The discharge reaction and precipitation of reaction products occurred near the electrode surface. Furthermore, it was shown that high rate discharge can be realized by improving the electrode structure and the impregnation state of the electrolyte.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で活用したin-situ計測技術は,リチウム空気電池だけでなく,他の二次電池や燃料電池など,多数の電気化学デバイス内で生じる現象の計測に活用でき,理学・工学の広範囲の学術領域で使用される新規性がある.さらに研究対象であるリチウム空気電池については,その理論容量の大きさから,電気自動車用の重要な電源となるだけでなく,再生可能エネルギーの利用・普及に向けた,大容量かつ安全な蓄電デバイスとしても重要な役割が果たせる.本研究で対象とする水系リチウム空気電池では電解液に塩化リチウム水溶液を用いるため,従来の有機電解液を用いたリチウムイオン電池のような,短絡時の火災リスクも大幅に低減できる.
|
Report
(6 results)
Research Products
(9 results)