Porous materials with hierarchical structure and cooperative deformation
Project/Area Number |
15H03785
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Inorganic chemistry
|
Research Institution | Kyoto University |
Principal Investigator |
|
Research Collaborator |
SUMIDA Kenji
LARPENT Patrick
IKEMURA Shuya
CARNE-SANCHEZ Arnau
|
Project Period (FY) |
2015-04-01 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥16,770,000 (Direct Cost: ¥12,900,000、Indirect Cost: ¥3,870,000)
Fiscal Year 2017: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2016: ¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2015: ¥7,670,000 (Direct Cost: ¥5,900,000、Indirect Cost: ¥1,770,000)
|
Keywords | 多孔性金属錯体 / 階層性 / モノリス構造 / 金属錯体 / 多孔体 / メゾスコピック / 階層構造 |
Outline of Final Research Achievements |
We have succeeded in the fabrication of monolith suprastructures of metal-organic frameworks or porous coordination polymers (MOF/PCP), which showed the flexible structural deformation in response to guest molecule accommodation. In this system, even though the crystalline of flexible MOF/PCP were integrated into three dimensional monolithic structure, the structural flexibility was maintained. This is an important step towards the control of microporosity by mechanical stress. In order to apply mechanical stress, the phase as soft matter would be more appropriate than the crystalline phase. Therefore, we also demonstrated a new method to fabricate soft matter like gels based on porous coordination polymers. Porous metal-organic polyhedra were used as porous monomers and interconnected by likers to form supramolecular polymers. The resulting gels were consisted of amorphous colloidal networks based on metal-organic polyhedra.
|
Academic Significance and Societal Importance of the Research Achievements |
本成果により合成された、ゼリーように柔らかいゲル状の多孔性材料は、様々な形態に成形することが可能である。そのため、必要な場所に、必要な形で、必要な量の多孔性材料を合成することができる。これらは、今後、ガス分離膜、分離用微細管、センサーデバイスなどへと応用することが可能である。また、微小なコロイド粒子中には細孔が存在し、様々な分子(例えば蛍光分子や、薬剤など)を閉じ込めることが可能であるため、新しい薬剤運搬材料として利用することも期待される。
|
Report
(4 results)
Research Products
(22 results)