• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Density Derivative Estimation and its Applications

Research Project

Project/Area Number 15H06103
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Intelligent informatics
Research InstitutionNara Institute of Science and Technology

Principal Investigator

Sasaki Hiroaki  奈良先端科学技術大学院大学, 情報科学研究科, 助教 (80756916)

Project Period (FY) 2015-08-28 – 2017-03-31
Project Status Completed (Fiscal Year 2016)
Budget Amount *help
¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords機械学習 / 確率密度微分 / 次元削減 / クラスタリング / 多様体 / モード回帰 / 多様体推定
Outline of Final Research Achievements

Estimating the derivatives of probability density functions is one of the important challenges in statistical data analysis. To estimate the derivatives, a naive approach is first to estimate the probability density function from data, and then to compute its derivatives. However, this approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator. To overcome this challenge, we took a different approach that directly estimates density derivatives without going through density estimation. Based on the direct approach, we proposed two methods to estimate the derivatives of conditional density functions and the ratios of density derivatives to its density. With the proposed methods, we developed supervised dimensionality reduction and density ridge estimation methods.

Report

(3 results)
  • 2016 Annual Research Report   Final Research Report ( PDF )
  • 2015 Annual Research Report
  • Research Products

    (12 results)

All 2017 2016 2015

All Journal Article (4 results) (of which Int'l Joint Research: 1 results,  Open Access: 1 results,  Acknowledgement Compliant: 4 results,  Peer Reviewed: 3 results) Presentation (8 results) (of which Int'l Joint Research: 5 results)

  • [Journal Article] Direct Estimation of the Derivative of Quadratic Mutual Information with Application in Supervised Dimension Reduction2017

    • Author(s)
      Voot Tangkaratt, Hiroaki Sasaki, Masashi Sugiyama
    • Journal Title

      Neural Computation

      Volume: 印刷中

    • Related Report
      2016 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] 確率密度微分の直接推定と機械学習への応用2016

    • Author(s)
      佐々木 博昭,杉山 将
    • Journal Title

      数理解析研究所講究録

      Volume: 1999 Pages: 154-173

    • Related Report
      2016 Annual Research Report
    • Open Access / Acknowledgement Compliant
  • [Journal Article] Direct Density Derivative Estimation2016

    • Author(s)
      Hiroaki Sasaki, Yung-Kyun Noh, Gang Niu Masashi Sugiyama
    • Journal Title

      Neural Computation

      Volume: 印刷中

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Regularized Multi-task Learning for Multi-Dimensional Log-Density Gradient Estimation2016

    • Author(s)
      Ikko Yamane, Hiroaki Sasaki, Masashi Sugiyama
    • Journal Title

      Neural Computation

      Volume: 印刷中

    • NAID

      110009971442

    • Related Report
      2015 Annual Research Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Estimating Density Ridges by Direct Estimation of Density-Derivative-Ratios2017

    • Author(s)
      Hiroaki Sasaki
    • Organizer
      The 20th International Conference on Artificial Intelligence and Statistics (AISTATS)
    • Place of Presentation
      Florida, USA
    • Year and Date
      2017-04-20
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Least-Squares Log-Density Gradient Clustering for Riemannian Manifolds2017

    • Author(s)
      Mina Ashizawa
    • Organizer
      The 20th International Conference on Artificial Intelligence and Statistics (AISTATS)
    • Place of Presentation
      Florida, USA
    • Year and Date
      2017-04-20
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Modal Regression via Direct Log-Density Derivative Estimation2016

    • Author(s)
      Hiroaki Sasaki
    • Organizer
      The 23th International Conference on Neural Information Processing (ICONIP)
    • Place of Presentation
      Kyoto, Japan
    • Year and Date
      2016-10-16
    • Related Report
      2016 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Non-Gaussian Component Analysis with Log-Density Gradient Estimation2016

    • Author(s)
      Hiroaki Sasaki
    • Organizer
      the 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016)
    • Place of Presentation
      Cadiz, Spain
    • Year and Date
      2016-05-09
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Least-Squares Log-Density Gradient Clustering for Riemannian Manifolds2016

    • Author(s)
      坂井 智哉
    • Organizer
      情報論的学習理論と機械学習研究会 (IBISML)
    • Place of Presentation
      統計数理研究所(東京都立川市)
    • Year and Date
      2016-03-17
    • Related Report
      2015 Annual Research Report
  • [Presentation] Non-Gaussian Component Analysis with Log-Density-Gradient Estimation2015

    • Author(s)
      佐々木 博昭
    • Organizer
      第18回情報論的学習理論ワークショップ (IBIS 2015)
    • Place of Presentation
      つくば国際会議場(茨城県つくば市)
    • Year and Date
      2015-11-25
    • Related Report
      2015 Annual Research Report
  • [Presentation] Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities2015

    • Author(s)
      佐々木 博昭
    • Organizer
      第18回情報論的学習理論ワークショップ (IBIS 2015)
    • Place of Presentation
      つくば国際会議場(茨城県つくば市)
    • Year and Date
      2015-11-25
    • Related Report
      2015 Annual Research Report
  • [Presentation] Sufficient Dimension Reduction via Direct Estimation of the Gradients of Logarithmic Conditional Densities2015

    • Author(s)
      Hiroaki Sasaki
    • Organizer
      the 7th Asian Conference on Machine learning (ACML 2015)
    • Place of Presentation
      Hong Kong, China
    • Year and Date
      2015-11-20
    • Related Report
      2015 Annual Research Report
    • Int'l Joint Research

URL: 

Published: 2015-08-26   Modified: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi