• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

ロボットによるリアルタイムでのアクションの予測に基づく作業支援に関する研究

Research Project

Project/Area Number 15H06670
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeSingle-year Grants
Research Field Perceptual information processing
Research InstitutionWaseda University

Principal Investigator

立松 直倫  早稲田大学, 理工学術院, 助手 (50755155)

Project Period (FY) 2015-08-28 – 2017-03-31
Project Status Declined (Fiscal Year 2016)
Budget Amount *help
¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords動作認識 / 予測 / リー代数空間
Outline of Annual Research Achievements

本科研費を元に、複数のグラフィックボードに対して、並列に処理を分散して実行することが可能なSLI(Scalable Link Interface)技術を用いて、演算に非常に時間がかかる特徴の計算を行うことで、研究者が従来行っていたCUDAを用いた方法の3倍程度の高速化を達成した。予測の場合、予測対象のアクションのフレーム数が長くなるほど、その部分アクションとして計算する必要のあるデータ量が指数関数的に増加するため、フレーム数が大きいアクションの実時間処理は困難だが、フレーム数が非常に短いアクションに対しては、実時間での処理も可能となる目途が立った。現時点では、処理性能の向上に加えて、更なる予測精度の向上を目指して、検討を行っており、精度の向上が実現でき次第、予測の研究の成果を学会にて発表する予定である。また、当研究に関連して、Kinect Version2で追加された新規の関節を用いた新しい上半身を対象とした特徴記述子を定義して、動作の種類だけでなく、行為の対象物の場所を認識する方法についても実画像を用いた研究を行った。こちらの研究に関しては、被験者の前にテーブルを置き、そのテーブルの上の異なる個所に置かれた対象物に対して複数のアクションを行った際の各関節の三次元位置をKinectVersion2により取得して、そのデータを元に学習した結果を用いて、正しく認識を行うことができるかどうかの検討を行った。センサーのノイズを除去した上で、提案手法を適用した所、認識率が90%以上という、非常に高い認識率を実現できることを確認したため、その成果を3月に行われる画像電子学会第276回研究会で発表した。

Research Progress Status

翌年度、交付申請を辞退するため、記入しない。

Strategy for Future Research Activity

翌年度、交付申請を辞退するため、記入しない。

Report

(1 results)
  • 2015 Annual Research Report
  • Research Products

    (1 results)

All 2016

All Presentation (1 results)

  • [Presentation] 3次元動画像から抽出される人物の部分骨格モデルを利用する人物の行動認識法の検討2016

    • Author(s)
      藤本 篤人,立松 直倫, 大谷 淳
    • Organizer
      画像電子学会 第 276 回研究会
    • Place of Presentation
      飯塚
    • Year and Date
      2016-03-03
    • Related Report
      2015 Annual Research Report

URL: 

Published: 2015-08-26   Modified: 2017-01-06  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi