作用素論・作用素環論への記述集合論及び超積によるアプローチ
Project/Area Number |
15J07735
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Basic analysis
|
Research Institution | Chiba University |
Principal Investigator |
安藤 浩志 千葉大学, 大学院理学研究科, 助教
|
Project Period (FY) |
2015-04-24 – 2016-03-31
|
Project Status |
Completed (Fiscal Year 2015)
|
Budget Amount *help |
¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 作用素環 / 超積 / スペクトル理論 / Borel同値関係 |
Outline of Annual Research Achievements |
(1) Eberhard Kirchberg氏との共同研究で、以下を示した: Aが可分単純非I型C*-環ならば、Kirchbergの中心列環F(A)で、sub-quotientがIII型因子環となるものが連続個存在する。特に自由群の被約群C*環の中心列環が非可換であるかを問うKirchbergの問を解決した(現在論文投稿中) (2) 松澤泰道氏との共同研究で、以下を示した: Hを可分無限次元Hilbert空間とするとき、H上の自己共役作用素全体の空間SA(H)は強resolvent収束に関してPolish空間(可分・完備距離付可能)となる。SA(H)上に様々な同値関係を与えることができるが、私は特にWeyl-von Neumannの同値関係(自己共役作用素A, Bはあるコンパクト作用素Kとユニタリ作用素uに対して、uAu*+K=Bを満たすとき、Weyl-von Neumann同値であると呼ぶ)について2014年にその同値関係としての複雑さの研究を開始した。 今年度は次の事を証明した: 実数列全体の空間X上の上に「数列a,bはある置換πによってa_{π(n)}-b_nがc_0となるとき同値」として同値関係Eを定めると、EはWeyl-von Neumann同値関係の可換版に相当するものと解釈できる。このEがBorelである事をBecker-Kechrisの定理を用いて証明した。また自己共役作用素のSchatten属作用素による摂動して得られる同値関係はessentiallly K_σである事を証明した。これらは論文を準備中である。
|
Research Progress Status |
27年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
27年度が最終年度であるため、記入しない。
|
Report
(1 results)
Research Products
(5 results)