立体構造情報と相互作用情報を組み合わせた薬剤オフターゲット予測システムの開発
Project/Area Number |
15J11261
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Life / Health / Medical informatics
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
伴 兼弘 東京工業大学, 情報理工学研究科, 特別研究員(DC1)
|
Project Period (FY) |
2015-04-24 – 2018-03-31
|
Project Status |
Completed (Fiscal Year 2017)
|
Budget Amount *help |
¥2,800,000 (Direct Cost: ¥2,800,000)
Fiscal Year 2017: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2016: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2015: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | 機械学習 / 統計モデル / 薬剤 / タンパク質 / ベイズ最適化 / ドッキング計算 / 創薬研究 / ネットワーク推定 / ドッキングシミュレーション / 人工知能 / 統計学 / 情報幾何 |
Outline of Annual Research Achievements |
薬剤とタンパク質の相互作用を予測することは創薬研究において重要な技術の1つである。薬剤は、一般に複数のタンパク質と相互作用することが知られており、予期せぬタンパク質との相互作用は副作用を引き起こす可能性がある。本研究では、機械学習や統計モデル等の技術を用いることで、薬剤とタンパク質の相互作用を効率的に予測するシステムの開発を行ってきた。 本年度(平成29年度)の研究実績は、(1)最先端手法であるベイズ最適化手法GP-MIを用いることで、薬剤-タンパク質間相互作用予測モデルの学習速度を改善し、その内容を「Efficient hyperparameter optimization by using Bayesian optimization for drug-target interaction prediction」(Ban+2017)にまとめ、国際会議「IEEE ICCABS 2017」で発表した。(2)ドッキングシミュレーションの性能を改善する方式「Multiple Grid Arrangement」(Ban+2018)を提案し、その内容を「Multiple Grid Arrangement Improves Ligand Docking with Unknown Binding Sites: Application to the Inverse Docking Problem」(Ban+2017)にまとめ、学会誌「Computational Biology and Chemistry」に投稿し採択された。(3)昨年度から研究を続けていた統計モデルによる予測手法の予測精度の改善を達成したことである。最先端手法であるNRLMF(Liu+2016)の予測結果を分析することで、モデルの問題点を特定し、予測精度の改善に成功した。現在、論文を執筆している。
|
Research Progress Status |
29年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
29年度が最終年度であるため、記入しない。
|
Report
(3 results)
Research Products
(8 results)