• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A study on feature transformation in pattern recognition

Research Project

Project/Area Number 15K00261
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Perceptual information processing
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Kobayashi Takumi  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 主任研究員 (30443188)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords特徴抽出 / 特徴変換 / 画像認識 / 動画像認識 / SVM / パターン識別 / 反転不変 / 固有値問題 / ディリクレ分布 / テンソル / SSIM / ヒストグラム特徴 / ボケ逆変換
Outline of Final Research Achievements

In this study, we have proposed various feature transformation methods to enhance the discriminative power of features. In general, the feature to represent the content of input data contains structural information which is derived from the characteristics of feature extractors and input data distribution. The proposed methods leverage the essential structures to improve the discriminativity of the features. Those methods are formulated especially by focusing on the deblurring of histogram, prior probabilistic models, physical structures and invariance to input data perturbation. We can apply the methods in a computationally efficient manner, while contributing to the improvement of feature representation as well as performance of the whole recognition systems.

Academic Significance and Societal Importance of the Research Achievements

近年、計測データの大規模化・多様化が進み、それらデータをサービス等へ利活用するためのデータ自動認識技術、いわゆるAIの需要が急速に拡大している。本研究成果は、自動認識の中核を成すパターン認識の性能改善に資するものである。特に、特徴抽出の後処理という位置づけで、様々な既存認識システムに容易かつ計算量的にも低コストで導入できるため波及効果も期待できる。さらにそのような実用面のみでなく、既存特徴量の変換処理に着目し、そこに数理的視点を導入した点でも学術的な意義が大きい。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (4 results)

All 2017 2016

All Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 1 results)

  • [Presentation] Flip-Invariant Motion Representation2017

    • Author(s)
      小林匠
    • Organizer
      2017 IEEE International Conference on Computer Vision
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 機械学習を用いた画像特徴量変換2017

    • Author(s)
      小林匠
    • Organizer
      第20回情報論的学習理論ワークショップ
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Structured Feature Similarity with Explicit Feature Map2016

    • Author(s)
      Takumi Kobayashi
    • Organizer
      IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    • Place of Presentation
      Caesars Palace, Las Vegas, Nevada, USA
    • Year and Date
      2016-06-27
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Histogram Feature Deblurring2016

    • Author(s)
      Takumi Kobayashi
    • Organizer
      International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
    • Place of Presentation
      Shanghai International Convention Center, Shanghai, China
    • Year and Date
      2016-03-25
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi