• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development and Application of an Imbalanced Data Classifier

Research Project

Project/Area Number 15K00323
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Intelligent informatics
Research InstitutionDoshisha University

Principal Investigator

Ohsaki Miho  同志社大学, 理工学部, 教授 (30313927)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords不均衡データ分類 / 混同行列 / カーネルロジスティック回帰 / 最小分類誤り学習 / 一般化確率的勾配法
Outline of Final Research Achievements

In a wide range of domains such as cancer diagnosis, vehicle accident prediction, etc., there is a high demand for the classification of a small number of emergent instances (minority class) and a large number of ordinary instances (majority class). However, the imbalance of the two classes causes overlooking minorities. Conventional solutions for this were domain-specific and difficult to control the balance of performance between the classes. We therefore aim at the development of an imbalanced data classifier which is of high versatility and achieves the balance control and the improvement of performances. The proposed method is based on kernel logistic regression, minimum classification error and generalized probabilistic descent, and confusion matrix. The superiority of the proposed method to the conventional ones was confirmed by the evaluation experiments. We finally published an academic journal paper to report all this research results.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (10 results)

All 2017 2016 2015 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (4 results)

  • [Int'l Joint Research] University of Cincinnati(米国)

    • Related Report
      2017 Annual Research Report
  • [Int'l Joint Research] University of Cincinnati(米国)

    • Related Report
      2016 Research-status Report
  • [Int'l Joint Research] University of Cincinnati(米国)

    • Related Report
      2015 Research-status Report
  • [Journal Article] Confusion-matrix-based Kernel Logistic Regression for Imbalanced Data Classification2017

    • Author(s)
      Miho Ohsaki, Peng Wang, Kenji Matsuda, Shigeru Katagiri, Hideyuki Watanabe, Anca Ralescu
    • Journal Title

      IEEE Transactions on Knowledge and Data Engineering

      Volume: vol.29, no.9 Issue: 9 Pages: 1806-1819

    • DOI

      10.1109/tkde.2017.2682249

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] カーネルロジスティック回帰を用いたC型慢性肝炎の肝線維化ステージ推定2015

    • Author(s)
      大崎美穂,松田健司,ワンペン,片桐滋,横井英人,高林克日己
    • Journal Title

      情報処理学会論文誌

      Volume: 56 Pages: 2117-2130

    • NAID

      170000130765

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Formulation of the Kernel Logistic Regression based on the Confusion Matrix2015

    • Author(s)
      Miho Ohsaki, Kenji Matsuda, Peng Wang, Shigeru Katagiri, Hideyuki Watanabe
    • Journal Title

      Proceedings of IEEE Congress on Evolutionary Computation

      Volume: CEC-2015 Pages: 2327-2334

    • DOI

      10.1109/cec.2015.7257172

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 最小分類誤り基準に基づくサポートベクター再学習による小規模カーネル分類器2017

    • Author(s)
      谷陵真,渡辺秀行,片桐滋,大崎美穂
    • Organizer
      電子情報通信学会,パターン認識・メディア理解研究会
    • Place of Presentation
      北海道大学大学院情報科学研究科棟(北海道札幌市)
    • Year and Date
      2017-02-18
    • Related Report
      2016 Research-status Report
  • [Presentation] A Class Boundary Selection Criterion for Classification2017

    • Author(s)
      David Ha, Juliette Maes, Yuya Tomotoshi, Charles Melle, Hideyuki Watanabe, Shigeru Katagiri, Miho Ohsaki
    • Organizer
      情報処理学会関西支部大会,G-11
    • Related Report
      2017 Annual Research Report
  • [Presentation] モデルサイズから見たカーネル最小分類誤り学習法の有用性の検証2016

    • Author(s)
      谷陵真,渡辺秀行,片桐滋,大崎美穂
    • Organizer
      情報処理学会関西支部大会
    • Place of Presentation
      大阪大学中之島センター(大阪府大阪市)
    • Related Report
      2016 Research-status Report
  • [Presentation] Kernel Logistic Regression based on the Confusion Matrix for Imbalanced Data Classification2015

    • Author(s)
      Peng Wang, Miho Ohsaki, Kenji Matsuda, Shigeru Katagiri, Hideyuki Watanabe
    • Organizer
      情報処理学会研究報告,vol. 2015-BIO-42,no.55,pp.1-2
    • Place of Presentation
      沖縄科学技術大学院大学
    • Year and Date
      2015-06-23
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2022-05-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi