• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Activity recognition using wearable sensors for various applications

Research Project

Project/Area Number 15K00367
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Intelligent robotics
Research InstitutionKanazawa Institute of Technology

Principal Investigator

KOGURE Kiyoshi  金沢工業大学, 工学部, 教授 (50395159)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywordsパターン認識 / 行動識別 / 特徴抽出 / 雑音除去自己符号化器 / 加速度 / 深層学習
Outline of Final Research Achievements

This research aims at developing activity recognition techniques using wearable sensors for various applications. It focuses on the feature extraction phase. It has experimentally evaluated how the performance of activity recognition from acceleration data depends on the ways of extracting features using denoising autoencoders. The experimental results show the effects on classification accuracy of the combinations of the body parts from which the acceleration data are obtained, the ways of providing a stacked denoising autoencoder with the acceleration data, the different numbers of nodes in the output layer of each stacked denoising autoencoders, and the different sizes of the time windows from which the acceleration data are extracted.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (1 results)

All 2017

All Presentation (1 results)

  • [Presentation] 加速度データからの行動識別のための雑音除去自己符号化器を用いた特徴抽出2017

    • Author(s)
      武山徹,小暮潔
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi