Development of spatio-temporal analysis method for bioimaging data
Project/Area Number |
15K00403
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Life / Health / Medical informatics
|
Research Institution | Osaka University |
Principal Investigator |
Seno Shigeto 大阪大学, 情報科学研究科, 准教授 (30432462)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | バイオイメージインフォマティクス / バイオインフォマティクス |
Outline of Final Research Achievements |
In recent years, live imaging of cultured cells and living environments has become possible due to the development of imaging technology. In this study, we attempted to propose a framework for automatic cell tracking, which is potentially accompanied by a series of spatiotemporal analyses, for bioimaging data observed over time under various conditions. The framework consists of a method for tracking the location of cells and estimating their states, and a method for spatiotemporal analysis.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、細胞の認識・細胞の追跡・細胞のパターンの時空間解析の要素技術を開発し、これらをつなぎ合わせた解析を試みた。特に、ケーススタディとして、細胞周期を可視化した細胞動画像の時空間解析や、2種類の細胞が生成する空間的パターンの解析などを行った。これらの方法論は、生命科学への貢献の他、画像取得から解析までを自動化するハイコンテントスクリーニングなど、医療や創薬への応用も期待できると考える。
|
Report
(5 results)
Research Products
(24 results)