• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Whole brain network analysis

Research Project

Project/Area Number 15K00418
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Life / Health / Medical informatics
Research InstitutionInstitute of Physical and Chemical Research

Principal Investigator

Okamoto Hiroshi  国立研究開発法人理化学研究所, 脳神経科学研究センター, 客員研究員 (00374067)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords複雑ネットワーク / コネクトーム / コミュニティ / モジュール / ランダムウォーク / マルコフ連鎖 / 機械学習 / 階層構造 / 全脳アーキテクチャ / リバースエンジニアリング / 全脳ネットワーク / 階層クラスタリング / 二部グラフ / ノンパラメトリッククラスタリング / テンポラルネットワーク / テンポラルコミュニティ / セルアセンブリ / EMアルゴリズム
Outline of Final Research Achievements

We have established a method to approach the whole brain architecture, the mechanism of information processing in the whole brain. This method is based on community detection in networks, where communities refer to sets of nodes in the network that are mutually connected at higher probability and are associated with functional modules. Applying this method to whole brain networks will therefore reveal the functional configuration diagram of the whole brain architecture. We have examined real brain network data by using this method and acquired novel findings: The mouse visual cortical area is functionally differentiated into ventral and dorsal pathways as with those of human and primate; hierarchical organization of the whole brain networks is generally non-tree structured, which suggests efficiency and flexibility of brain information processing.

Academic Significance and Societal Importance of the Research Achievements

脳は情報をネットワークとして処理する。本研究の目的は、脳情報処理の仕組みに脳ネットワークの分析を通じてせまる方法を構築することである。コミュニティ構造抽出方法を確立することによりこの目的をほぼ達成し、脳情報処理を全面的に解明するための橋頭保を築くことができた。さらに、本研究が構築した方法は、現実世界における脳以外の様々なネットワーク(例えば、文書引用関係、SNSにおける知人関係、購買履歴における商品と消費者との関係)にも適用可能であり、社会・産業における様々な価値にもつながることが期待される(例えば、購買履歴から特徴的な購買層・商品群を見つけてそれを販売・宣伝戦略立案に役立てる)。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (22 results)

All 2019 2018 2017 2016 2015

All Journal Article (7 results) (of which Int'l Joint Research: 4 results,  Peer Reviewed: 5 results,  Open Access: 1 results,  Acknowledgement Compliant: 3 results) Presentation (15 results) (of which Int'l Joint Research: 10 results,  Invited: 2 results)

  • [Journal Article] Relation prediction in knowledge graph by Multi-Label Deep Neural Network2019

    • Author(s)
      Onuki, Y., Murata, T., Nukui, S., Inagi, S., Qiu, X.-L., Watanabe, M., Okamoto, H.
    • Journal Title

      Applied Network Science

      Volume: 4 Issue: 1

    • DOI

      10.1007/s41109-019-0133-4

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Predicting Relations Between RDF Entities by Deep Neural Network2017

    • Author(s)
      Tsuyoshi, M., Onuki, Y., Nukui,S., Inagi, S., Qiu, Xu-le, Watanabe, M. & Okamoto, H.
    • Journal Title

      Lecture Notes in Computer Science

      Volume: 10577 Pages: 343-354

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Topic Extraction on Twitter Considering Author’s Role Based on Bipartite Networks2017

    • Author(s)
      Hashimoto, T., Kuboyama, T., Okamoto, H. & Shin K.
    • Journal Title

      Lecture Notes in Computer Science

      Volume: 10558 Pages: 239-247

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] 全脳ネットワーク分析:コネクトームのリバースエンジニアリング2017

    • Author(s)
      岡本洋
    • Journal Title

      人工知能

      Volume: 32 Pages: 836-844

    • NAID

      130007917378

    • Related Report
      2017 Research-status Report
  • [Journal Article] Local community detection as pattern restoration by attractor dynamics of recurrent neural networks2016

    • Author(s)
      Okamoto, H.
    • Journal Title

      BioSystems

      Volume: TBD Pages: 85-90

    • DOI

      10.1016/j.biosystems.2016.03.006

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] 全脳ネットワーク分析:複雑ネットワーク科学とコネクトームとの融合から全脳アーキテクチャにせまる2016

    • Author(s)
      岡本洋
    • Journal Title

      知能と情報(日本知能情報ファジィ学会誌)

      Volume: 28

    • NAID

      130006707907

    • Related Report
      2015 Research-status Report
    • Acknowledgement Compliant
  • [Journal Article] Community Detection as Pattern Restoration by Attractor Neural-Network Dynamics2015

    • Author(s)
      Okamoto, H.
    • Journal Title

      Lecture Notes in Computer Science (Springer)

      Volume: 9303 Pages: 197-207

    • DOI

      10.1007/978-3-319-23108-2_17

    • ISBN
      9783319231075, 9783319231082
    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Community detection by modular decomposition of random walk2018

    • Author(s)
      Okamoto, H., Qiu, X.-L.
    • Organizer
      Complex network Science (Dec 11-13 2018, Cambridge, U.K.)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Connectome informatics: Reverse engineering of whole brain networks2018

    • Author(s)
      Okamoto, H., Suzuki, Y., Hayami, T., Negishi, S., Tamaru, H., Mizutani, H., Yamakawa, H.
    • Organizer
      Advances in Neuroinformatics 2018 (https://www.neuroinf.jp/aini2018/)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Detecting communities in temporal networks built by associating temporal tags with events2017

    • Author(s)
      Hiroshi Okamoto
    • Organizer
      NeySciX2017
    • Place of Presentation
      Tel Aviv, Israel
    • Year and Date
      2017-01-15
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Predicting relations of embedded RDF entities by Deep Neural Network2017

    • Author(s)
      Onuki, Y., Tsuyoshi, M., Nukui, S., Inagi, S., Qiu, Xu-le, Watanabe, M. & Okamoto, H.
    • Organizer
      The 16th International Semantic Web Conference (ISWC 2017), Poster
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Topic life cycle extraction from big Twitter data based on community detection in bipartite networks2017

    • Author(s)
      Hashimoto, T., Okamoto, H., Kuboyama, T. & Shin, K.
    • Organizer
      2017 IEEE International Conference on Big Data (IEEE BigData 2017, Boston, MA, USA)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Topic Extraction from Millions of Tweets Based on Community Detection in Bipartite Networks2017

    • Author(s)
      Hashimoto, T., Kuboyama, T., Okamoto, H. & Shin, K.
    • Organizer
      The 27th International Conference on Information Modelling and Knowledge Bases (EJC 2017, Krabi, Thailand)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Community Detection in Bipartite Networks by Modular Decomposition of Random Walk and its Applications to Data Analysis2017

    • Author(s)
      Qiu, Xu-le, Inagi, S., Tsuyoshi, M. & Okamoto, H.
    • Organizer
      International School and Conference on Network Science (NetSci2017, Indianapolis, Indiana)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] テンポラルネットワークからのコミュニティ抽出:エピソード記憶における海馬歯状回ニューロン新生の役割2016

    • Author(s)
      岡本洋
    • Organizer
      第30回人工知能学会全国大会
    • Place of Presentation
      北九州国際会議場(福岡県北九州市)
    • Year and Date
      2016-06-06
    • Related Report
      2016 Research-status Report
  • [Presentation] Extracting Hierarchical Organization of Communities in Networks by Series of Phase Transitions Induced by Quasi-Static Increase in Resolution2016

    • Author(s)
      Qiu Xu-le, Hiroshi Okamoto
    • Organizer
      NetSci2016
    • Place of Presentation
      Seoul, South Korea
    • Year and Date
      2016-05-30
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Community Detection as Pattern Restoration by Attractor Neural-Network Dynamics2015

    • Author(s)
      Okamoto, H.
    • Organizer
      10th International Conference on Information Processing in Cells and Tissues
    • Place of Presentation
      San Diego, USA
    • Year and Date
      2015-09-16
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] 全脳ネットワーク分析:要素間関係がつくる神経機能モジュールの解明2015

    • Author(s)
      岡本洋
    • Organizer
      研究戦略ワークショップ Strategy for Neuroscience 2015
    • Place of Presentation
      玉川大学
    • Year and Date
      2015-09-05
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] 全脳アーキテクチャのアキレス腱:JWEIN/コミュニティ構造分析の視点から2015

    • Author(s)
      岡本洋
    • Organizer
      ネットワークが創発する知能研究会(JWEIN2015)
    • Place of Presentation
      日本大学理工学部駿河台キャンパス
    • Year and Date
      2015-08-20
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] 脳ネットワークのコミュニティは非木型の階層構造を持つ2015

    • Author(s)
      岡本洋
    • Organizer
      第38回日本神経科学大会
    • Place of Presentation
      神戸国際会議場・神戸国際展示場
    • Year and Date
      2015-07-28
    • Related Report
      2015 Research-status Report
  • [Presentation] Hierarchical organization of multi-scale communities in brain networks is non-tree structured2015

    • Author(s)
      Okamoto, H.
    • Organizer
      24th Annual Computational Neuroscience Meeting
    • Place of Presentation
      Prague, Czech Republic
    • Year and Date
      2015-07-20
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research
  • [Presentation] 脳ネットワークのコミュニティは非木型階層構造を持つ2015

    • Author(s)
      岡本洋
    • Organizer
      第29回人工知能学会全国大会
    • Place of Presentation
      公立はこだて未来大学
    • Year and Date
      2015-06-01
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi