• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Evaluation of tsunami resistance of coastal forest by combining mechanistic and growth model.

Research Project

Project/Area Number 15K01254
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Natural disaster / Disaster prevention science
Research InstitutionHokkaido Research Organization

Principal Investigator

Torita Hiroyuki  地方独立行政法人北海道立総合研究機構, 森林研究本部林業試験場, 部長 (50414264)

Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords津波 / 海岸防災林 / 限界流速 / 被害形態 / 森林管理 / 限界浸水深 / クロマツ / 根返り / 森林施業 / 幹折れ / 抵抗性 / 流速 / 立木密度 / 成育過程 / 根返り抵抗モーメント / 樹幹内応力 / 細り
Outline of Final Research Achievements

In order to construct the strong coastal forests against tsunamis, we evaluated the influence of forest management on the tsunami resistance of Pinus thunbergii Parlat. forests using a mechanistic model. We set up three forest management types, which were sparse (sparse type: ST), middle (middle type: MT), and dense (dense type: DT) stand. As an indicator expressing resistance to tsunami, critical velocity required to overturn or break the trunk of trees was calculated. The critical velocity increased with increasing tree growth and the value of critical velocity differed among management types. ST was the most resistant to tsunami of the three forest management types. However, our results showed that when water depth exceeds 8 m, forests were completely destroyed and the limitation existed on improving its resistance. Moreover, the forest management was found to have a possibility to control damage phenomena (overturning or trunk breakage) of trees by tsunamis in coastal forests.

Academic Significance and Societal Importance of the Research Achievements

東北地方太平洋沖地震津波による人的被害および経済的被害は甚大である。今後、津波発生の危険性が高まりつつある中、海岸林が果たす防災機能を効果的に発揮することが求められている。本研究では、海岸林の津波抵抗性を定量的に評価し、適切な森林管理によりその抵抗性を向上させる事が可能であることを示した。これらの成果は、海岸林が防潮機能を発揮し、減災効果を発揮するための基礎的知見の一つとなる。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (5 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results)

  • [Journal Article] Evaluation of the resistance of coastal Pinus thunbergii Parlat. forests to the tsunami fluid force in Japan2019

    • Author(s)
      Hiroyuki Torita,Norio Tanaka
    • Journal Title

      Natural Hazards

      Volume: 印刷中 Issue: 3 Pages: 1141-1152

    • DOI

      10.1007/s11069-019-03600-9

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Effects of forest management on resistance against tsunamis in coastal forests2018

    • Author(s)
      Hiroyuki Torita,Norio Tanaka,Kazuhiko Masaka,Kenta Iwasaki
    • Journal Title

      Ocean Engineering

      Volume: 169 Pages: 379-387

    • DOI

      10.1016/j.oceaneng.2018.09.013

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Presentation] 海岸防災林の津波に対する抵抗性2018

    • Author(s)
      鳥田宏行
    • Organizer
      平成30年度 日本海岸林学会石垣大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 海岸防災林における津波抵抗性と森林管理の関係2017

    • Author(s)
      鳥田宏行
    • Organizer
      第66回北方森林学会
    • Related Report
      2017 Research-status Report
  • [Presentation] 津波による海岸林の被害形態2016

    • Author(s)
      鳥田宏行
    • Organizer
      北方森林学会
    • Place of Presentation
      札幌コンベンションセンター
    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi