• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Penalized Empirical Likelihood Estimation for High-Dimensional Data Analysis

Research Project

Project/Area Number 15K03396
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Economic statistics
Research InstitutionKobe University

Principal Investigator

Sueishi Naoya  神戸大学, 経済学研究科, 教授 (40596251)

Co-Investigator(Kenkyū-buntansha) 安道 知寛  慶應義塾大学, 経営管理研究科(日吉), 准教授 (40407135)
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords罰則付き経験尤度推定量 / 情報量規準 / 変数選択 / 高次元データ / 経験尤度法 / 罰則付き推定 / 経験尤度
Outline of Final Research Achievements

Penalized estimation is a useful technique for variable section when the number of potential variables is large. A crucial issue in penalized estimation is the selection of the regularization parameter. However, there has been little study on the selection method of the regularization parameter for the penalized estimation of moment restriction models. This study proposes a new information criterion, which we call the empirical likelihood information criterion, to select the regularization parameter of the penalized empirical likelihood estimator. On the basis of the idea of the Akaike information criterion, our information criterion is derived as an asymptotically unbiased estimator for the Kullback-Leibler information criterion.

Academic Significance and Societal Importance of the Research Achievements

近年、ビッグデータと呼ばれる大規模データの分析が、産業界においても脚光を浴びている。計量経済学でも徐々に高次元データの利用が進みつつあるものの、応用研究はそれほど多くないのが実情である。そのひとつの理由として、従来の正則化法の研究の多くが相関関係の発見を目的としているのに対し、経済学者は因果関係の発見に興味があるという点が考えられる。本研究は、回帰モデルのみならず、より広いクラスのモデルに対して正則化法の利用可能性を広げるものであり、因果効果の分析など経済学的見地から重要な問題を考察するうえで有用な手段となりうるものである。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017 2016 2015 Other

All Int'l Joint Research (2 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results) Remarks (1 results)

  • [Int'l Joint Research] University of Melbourne(オーストラリア)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] University of Melbourne(Australia)

    • Related Report
      2017 Research-status Report
  • [Journal Article] On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator2019

    • Author(s)
      Tomohiro Ando and Naoya Sueishi
    • Journal Title

      Econometrics

      Volume: 7 Issue: 1 Pages: 15-15

    • DOI

      10.3390/econometrics7010015

    • NAID

      120006631011

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Regularization Parameter Selection for Penalized Empirical Likelihood Estimator2019

    • Author(s)
      Tomohiro Ando and Naoya Sueishi
    • Journal Title

      Economics Letters

      Volume: 178 Pages: 1-4

    • DOI

      10.1016/j.econlet.2019.02.011

    • NAID

      120006631014

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Note on Generalized Empirical Likelihood Estimation of Semiparametric Conditional Moment Restriction Models2017

    • Author(s)
      Naoya Sueishi
    • Journal Title

      Econometric Theory

      Volume: 印刷中 Issue: 5 Pages: 1242-1258

    • DOI

      10.1017/s0266466616000360

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Efficient Regularization Parameter Selection for Maximum Likelihood Post-Selection Estimation in Generalized Linear Models2018

    • Author(s)
      末石直也
    • Organizer
      Summer Workshop on Economic Theory
    • Related Report
      2018 Annual Research Report
  • [Presentation] Efficient Regularization Parameter Selection for Maximum Likelihood Post-Selection Estimation in Generalized Linear Models2018

    • Author(s)
      末石直也
    • Organizer
      Workshop on Advances in Econometrics 2018
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Penalized empirical likelihood estimation and model selection for high-dimensional misspecified moment restriction models2016

    • Author(s)
      末石直也
    • Organizer
      Summer Workshop on Economic Theory
    • Place of Presentation
      小樽商科大学(北海道・小樽市)
    • Year and Date
      2016-08-06
    • Related Report
      2016 Research-status Report
  • [Presentation] Penalized empirical likelihood estimation and model selection for high-dimensional misspecified moment restriction models2016

    • Author(s)
      末石直也
    • Organizer
      The 2nd Annual International Conference on Applied Econometrics
    • Place of Presentation
      ハワイ(アメリカ)
    • Year and Date
      2016-06-29
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Regularization parameter selection for penalized empirical likelihood estimator in misspecified models2016

    • Author(s)
      末石直也
    • Organizer
      統計科学研究拠点セミナー
    • Place of Presentation
      広島大学(広島県・東広島市)
    • Year and Date
      2016-03-04
    • Related Report
      2015 Research-status Report
  • [Presentation] Penalized Empirical Likelihood Estimation and Regularization Parameter Selection in Misspecified Models2015

    • Author(s)
      末石直也
    • Organizer
      土曜研究会
    • Place of Presentation
      小樽商科大学 (北海道・小樽市)
    • Year and Date
      2015-11-02
    • Related Report
      2015 Research-status Report
  • [Remarks] ワーキングペーパー(Ando and Sueishi 2017) の掲載ページ

    • URL

      https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3079386

    • Related Report
      2017 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi