Project/Area Number |
15K04600
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Nanostructural physics
|
Research Institution | Hiroshima University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
GALIF KUTLUK 広島大学, 放射光科学研究センター, 特任准教授 (00444711)
|
Project Period (FY) |
2015-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥5,070,000 (Direct Cost: ¥3,900,000、Indirect Cost: ¥1,170,000)
Fiscal Year 2017: ¥130,000 (Direct Cost: ¥100,000、Indirect Cost: ¥30,000)
Fiscal Year 2016: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2015: ¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
|
Keywords | 光電子分光 / ナノ粒子 / 触媒 / X線光電子分光 / 窒素酸化物 / CeO2 / Ceナノ粒子 / Rhナノ粒子 / Ce薄膜 |
Outline of Final Research Achievements |
In order to improve the performance of exhaust gas catalysts, we have carried out photoelectron spectroscopy experiments using soft X-ray radiation for catalytic reactions involving noble metal nanoparticles, oxide-supported substrates, and exhaust gas molecules. We conducted exposure experiments of air to nanoparticles and exposure experiments of NO and NO+O2, and observed in detail the surface and internal states of nanoparticles and the state of adsorbed nitrogen. As a result, while oxidation of the Rh nanoparticles proceeds from the surface, there is also oxidation from the oxide substrate during long-term exposure, and in the surface adsorption of nitrogen oxides, molecular dissociation is confirmed and mixed gas It could be confirmed that NO2 was adsorbed slightly. Reaction energy was evaluated in first atom calculations based on a simplified model to understand the results.
|
Academic Significance and Societal Importance of the Research Achievements |
地球環境保善の観点から自動車排ガス浄化が必須の課題であり、特にディーゼルエンジンでの窒素酸化物の浄化は急務である。本研究は、窒素酸化物の浄化向上の研究に、触媒化学反応の素過程に着目した電子構造解析を実験的に行うとともに、第一原理計算を用いた電子構造解析と比較し、実際の触媒反応を数値的に把握することで、触媒反応についての一層の理解を得ることに繋げた。 この結果、従来の触媒開発での触媒の施策、性能評価、解析、改善などの実際の物による評価から、放射光実験と計算機シミュレーションによる探索的研究を効率的に行い、実用材料の開発期間を大幅に短縮できる可能性を示すことができた。
|