• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On the Lefschetz property of complete intersections

Research Project

Project/Area Number 15K04812
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNiigata University

Principal Investigator

Harima Tadahito  新潟大学, 人文社会科学系, 教授 (30258313)

Co-Investigator(Kenkyū-buntansha) 和地 輝仁  北海道教育大学, 教育学部, 准教授 (30337018)
五十川 読  熊本高等専門学校, 共通教育科(八代キャンパス), 教授 (80223056)
Research Collaborator Watanabe Junzo  
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords可換環 / 完全交叉環 / アルティン環 / ゴレンスタイン環 / レフシェッツ性 / 対称式 / 終結式 / 可換環論 / 完全交叉 / Macaulay dual generator / m-fullness / componentwise m-fullness / Macaulayの双対元 / completely m-fullness / componentwise linearity / EGH予想 / Sperner性 / matching性 / filterwise m-fullness
Outline of Final Research Achievements

We studied the Lefschetz property of complete intersections. Main results of this research are the followings: 1. Any quadratic complete intersection with certain action of the symmetric group has the strong Lefschetz property. 2. Suppose that the EGH Conjecture is true for a complete intersection A. Then A has the Sperner property. 3. All complete intersections defined by products of general linear forms have the strong Lefschetz property. 4. We gave a characterization of the Macaulay dual generators for quadratic complete intersections. 5. We gave another proof of some known results on power sum symmetric polynomials in three variables.

Academic Significance and Societal Importance of the Research Achievements

完全交叉のレフシェッツ性に関する研究は、コンピュータサイエンスとも関連のある多項式環論の基礎研究の一つである。また、レフシェッツ性は、線形写像の最強のジョルダン分解を求める問題とも関連しており、今後、線形写像のレフシェッツ性は、代数学の基本的な事項として位置付けられるのではないだろうか。

Report

(5 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (21 results)

All 2019 2018 2017 2016 2015 Other

All Journal Article (9 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 6 results,  Acknowledgement Compliant: 1 results) Presentation (9 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results) Remarks (3 results)

  • [Journal Article] The resultants of quadratic binomial complete intersections2019

    • Author(s)
      Tadahito Harima, Akihito Wachi, Junzo Watanabe
    • Journal Title

      Journal of Commutative Algebra

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] The strong Lefschetz property for complete intersections defined by products of linear forms2019

    • Author(s)
      Tadahito Harima, Akihito Wachi, Junzo Watanabe
    • Journal Title

      Archiv der Mathematik

      Volume: -

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Lefschetz properties for complete intersection ideals generated by products of linear forms2018

    • Author(s)
      Martina Juhnke-Kubitzke, Rosa Miro-Roig, Satoshi Murai, Akihito Wachi
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 146 Pages: 3249-3256

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Regular sequences of power sums in the polynomial ring in three variables2018

    • Author(s)
      Satoru Isogawa, Tadahito Harima
    • Journal Title

      Research Reports of National Institute of Technology (Kumamoto College)

      Volume: 10 Pages: 60-66

    • NAID

      130007974307

    • Related Report
      2018 Annual Research Report
  • [Journal Article] EGH Conjecture and the Sperner Property of complete intersections2017

    • Author(s)
      Tadahito Harima, Akihito Wachi, Junzo Watanabe
    • Journal Title

      Proceedings of the American Mathematical Society

      Volume: 145 Pages: 1497-1503

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Componentwise m-full modules2017

    • Author(s)
      Satoru Isogawa
    • Journal Title

      Research Reports of NIT, Kumamoto College

      Volume: 9 Pages: 91-99

    • NAID

      130007978240

    • Related Report
      2017 Research-status Report
  • [Journal Article] Strongly m-full modules2017

    • Author(s)
      Satoru Isogawa
    • Journal Title

      Research Reports of NIT, Kumamoto College

      Volume: 9 Pages: 100-108

    • NAID

      130007978230

    • Related Report
      2017 Research-status Report
  • [Journal Article] Weyr structure of matrices and relevance to commutative finite-dimensional algebras2017

    • Author(s)
      Kevin O'Meara, Junzo Watanabe
    • Journal Title

      Linear algebras and its applications

      Volume: 532 Pages: 364-386

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] The quadratic complete intersections associated with the action of the symmetric group2015

    • Author(s)
      Tadahito Harima, Akihito Wachi, Junzo Watanabe
    • Journal Title

      Illinois Journal of Mathematics

      Volume: 59 Pages: 99-113

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] 一次式の積で定義される完全交叉の強いレフシェッツ性について2018

    • Author(s)
      張間 忠人、和地 輝仁、渡辺 純三
    • Organizer
      日本数学会2018年度秋期総合分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Regular sequences of power sums2018

    • Author(s)
      五十川 読、張間 忠人
    • Organizer
      第139回日本数学会九州支部例会
    • Related Report
      2018 Annual Research Report
  • [Presentation] A characterization of the Macaulay dual generators for quadratic complete intersections2017

    • Author(s)
      Akihito Wachi
    • Organizer
      Workshop on Lefschetz Properties in Algebra, Geometry and Combinatorics, Mittag-Leffler Insitute (Sweeden)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] The Weyr form seems a better tool for Artinitan algebras than the Jordan form2017

    • Author(s)
      Junzo Watanabe
    • Organizer
      Lefschetz Property in Algebra, Geometry and Combinatorics, Mittag-Leffler Insitute (Sweeden)
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] The resultants of quadratic binomials2017

    • Author(s)
      渡辺純三
    • Organizer
      第39回可換環論シンポジウム(京都数理解析研究所)
    • Related Report
      2017 Research-status Report
  • [Presentation] Componentwise m-full modules over a standard graded algebra2017

    • Author(s)
      五十川 読
    • Organizer
      第137回日本数学会九州支部例会(熊本大学)
    • Related Report
      2017 Research-status Report
  • [Presentation] 次数付き0次元ゴレンスタイン環のレフシェッツ性について2017

    • Author(s)
      渡辺純三
    • Organizer
      日本数学会春期総合分科会(東京大学)、企画特別講演
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] The EGH conjecture and the Sperner property of complete intersections2016

    • Author(s)
      張間忠人、和地輝仁、渡辺純三
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      関西大学(大阪府吹田市)
    • Year and Date
      2016-09-16
    • Related Report
      2016 Research-status Report
  • [Presentation] 対称群が作用する0 次元完全交叉環の強いレフシェッツ性2016

    • Author(s)
      和地輝仁、張間忠人、渡辺純三
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      関西大学(大阪府吹田市)
    • Year and Date
      2016-09-16
    • Related Report
      2016 Research-status Report
  • [Remarks] 新潟大学 研究者総覧

    • URL

      http://researchers.adm.niigata-u.ac.jp/html/100000788_ja.html?k=%E5%BC%B5%E9%96%93

    • Related Report
      2018 Annual Research Report
  • [Remarks] 新潟大学 研究者総覧

    • URL

      http://researchers.adm.niigata-u.ac.jp/html/100000788_ja.html

    • Related Report
      2017 Research-status Report
  • [Remarks] 新潟大学研究者総覧ホームページ

    • URL

      http://researchers.adm.niigata-u.ac.jp/html/100000788_ja.html

    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi