• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Birational geometry of moduli spaces of algebraic sheaves

Research Project

Project/Area Number 15K04824
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionKumamoto University

Principal Investigator

ABE Takeshi  熊本大学, 大学院先端科学研究部(理), 准教授 (90362409)

Project Period (FY) 2015-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2015: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords代数的層 / モジュライ空間 / 層のモジュライ / ベクトル束 / 代数的層のモジュライ
Outline of Final Research Achievements

There is a theta divisor on the Picard group, the set of linear equivalence classes of divisors, of a compact Riemann surface. As a ``non-abelian analogue’’, we have a generalized theta divisor on the moduli space of algebraic vector bundles on a compact Riemann surface. A global section of the line bundle associated with a generalized theta divisor is called a generalized theta function. We have an interesting phenomena called Strange duality about generalized theta functions. It is conjectured that we also have Strange duality phenomena for moduli spaces of sheaves on projective surfaces. I once proved partially the strange duality conjecture for projective plane. In this research, continuing the preceding research, I proved some cases of the strange duality conjecture for a quadric surface.

Report

(4 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (6 results)

All 2017 2016 2015

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results) Funded Workshop (1 results)

  • [Journal Article] Semistable sheaves with symmetric $c_{1}$ on a quadric surface2017

    • Author(s)
      Takeshi Abe
    • Journal Title

      The Nagoya Mathematical Journal

      Volume: 227 Pages: 86-159

    • DOI

      10.1017/nmj.2016.50

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Strange duality for height zero moduli spaces of sheaves on P22015

    • Author(s)
      Takeshi Abe
    • Journal Title

      The Michigan Mathematical Journal

      Volume: 64 Issue: 3 Pages: 569-586

    • DOI

      10.1307/mmj/1441116659

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Semistable sheaves with symmetric c1 on a quadric surface2017

    • Author(s)
      Takeshi ABE
    • Organizer
      Algebraic Geometry Seminar in Kumamoto
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Strange Duality for Height Zero Moduli Spaces of Sheaves on P22016

    • Author(s)
      Takeshi Abe
    • Organizer
      高次元代数幾何とその周辺
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2016-02-05
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Strange Duality for Height Zero Moduli Spaces of Sheaves on P22015

    • Author(s)
      Takeshi Abe
    • Organizer
      Japanese-European Symposium on Symplectic Varieties and Moduli Spaces
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2015-10-26
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Funded Workshop] 代数的層のモジュライの研究とその周辺2017

    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2017-02-01
    • Related Report
      2016 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi