• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on a variational problem related to conformal maps and a variational problem of pullback of metrics

Research Project

Project/Area Number 15K04846
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionYamaguchi University

Principal Investigator

Nakauchi Nobumitsu  山口大学, 大学院創成科学研究科, 教授 (50180237)

Co-Investigator(Kenkyū-buntansha) 内藤 博夫  山口大学, その他部局等(理学), 名誉教授 (10127772)
近藤 慶  山口大学, 大学院創成科学研究科, 准教授 (70736123)
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2015: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords多様体 / 変分問題 / 共形写像 / variational problem / conformal map / pullback / symphonic map / C-stationary map / weakly conformal map / Riemannian manifold / metric / symphonic flow
Outline of Final Research Achievements

I focused on a covariant tensor for a smooth map f between Riemannian manifolds. This tensor vanishes if and only if such a map f is weakly conformal. I introduced an integral quantity and a concept of C-stationary map using this tensor and give some results on these maps. Furthermore I decomposed the quantity and obtained a functional of an integral of pullbacks of metrics. Using this functional, I introduced a concept of symphonic map, which is a counterpart of the concept of harmonic maps in a viewpoint of pullbacks of metrics. I give some results on these maps.

Academic Significance and Societal Importance of the Research Achievements

2つのリーマン多様体間の写像の共形性に関して, C-stationary map という新しい概念を導入した. C-stationary map により, 2つの多様体の共形構造の違いを測るなどの応用が期待できる. C-stationary map の定義方程式は, 新しいタイプの主要項をもち, 研究が進めば, 方法論に貢献できる. さらに, この研究過程で新しい汎函数が得られ, symphonic map という概念を与えたが,「計量の pullback」という観点からは, 「harmonic map という概念の counterpart としての位置づけ」が得られる.

Report

(4 results)
  • 2018 Final Research Report ( PDF )
  • 2017 Annual Research Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (13 results)

All 2018 2017 2016 2015

All Journal Article (6 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 6 results,  Acknowledgement Compliant: 2 results) Presentation (7 results) (of which Invited: 3 results)

  • [Journal Article] Grassmann geometry on the 3-dimensional non-unimodular Lie groups2018

    • Author(s)
      Jun-ichi Inoguchi and Hiroo Naitoh
    • Journal Title

      Hokkaido Mathmatical Journal

      Volume: 印刷中

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Approximations of Lipschitz maps via immersions2017

    • Author(s)
      Kei Kondo, Minoru Tanaka
    • Journal Title

      Nonlinear Analysis

      Volume: 155 Pages: 219-249

    • DOI

      10.1016/j.na.2017.01.022

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Stability of stationary maps of a functional related to pullbacks of metrics2016

    • Author(s)
      Shigeo Kawai and Nobumitsu Nakauchi
    • Journal Title

      Differential Geometry and its Applications

      Volume: 44 Pages: 161-177

    • DOI

      10.1016/j.difgeo.2015.11.005

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Holder continuity of symphonic maps into the spheres2016

    • Author(s)
      Masashi Misawa and Nobumitsu Nakauchi
    • Journal Title

      Calculus of Variations and Partial Differential Equations

      Volume: 55 Issue: 1

    • DOI

      10.1007/s00526-015-0940-0

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Bubbling phenomena of biharmonic maps2015

    • Author(s)
      Nobumitsu Nakauchi and Hajime Urakawa
    • Journal Title

      Journal of Geometry and Physics

      Volume: 98 Pages: 355-375

    • DOI

      10.1016/j.geomphys.2015.07.013

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Journal Article] Triharmonic isometric immersions into a manifold of non-positively constant curvature2015

    • Author(s)
      Shun Maeda, Nobumitsu Nakauchi and Hajime Urakawa
    • Journal Title

      Monatshefte fur Mathematik

      Volume: 177 Pages: 551-567

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] 対称空間とグラスマン幾何2018

    • Author(s)
      Hiroo Naitoh
    • Organizer
      第17回秋葉原微分幾何セミナー
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] Hopfのピンチング予想から微分異種球面定理へ2018

    • Author(s)
      Kei Kondo
    • Organizer
      日本数学会年会
    • Related Report
      2017 Annual Research Report
    • Invited
  • [Presentation] 対称空間とグラスマン幾何2017

    • Author(s)
      内藤博夫
    • Organizer
      小磯憲史先生退職記念研究集会
    • Place of Presentation
      大阪大学(大阪府豊中市)
    • Year and Date
      2017-03-13
    • Related Report
      2016 Research-status Report
  • [Presentation] 計量の pullback に関連したある汎関数の stationary map について2017

    • Author(s)
      Shigeo Kawai and Nobumitsu Nakauchi
    • Organizer
      日本数学会年会
    • Related Report
      2017 Annual Research Report
  • [Presentation] 計量の pullback に関連したある汎関数の stationary map について2017

    • Author(s)
      河合茂生, 中内伸光
    • Organizer
      日本数学会年会
    • Place of Presentation
      首都大学東京(東京都八王子市)
    • Related Report
      2016 Research-status Report
  • [Presentation] 微分異種球面定理2016

    • Author(s)
      近藤慶
    • Organizer
      日本数学会年会
    • Place of Presentation
      筑波大学(茨城県つくば市)
    • Year and Date
      2016-01-10
    • Related Report
      2015 Research-status Report
  • [Presentation] 薄滑解析と微分球面定理2016

    • Author(s)
      近藤慶
    • Organizer
      日本数学会秋期総合分科会
    • Place of Presentation
      関西大学(大阪府吹田市)
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi