• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Kuranishi structures on moduli spaces of stable maps in non-compact symplectic manifolds

Research Project

Project/Area Number 15K04850
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTokyo Metropolitan University

Principal Investigator

Akaho Manabu  首都大学東京, 理学研究科, 准教授 (30332935)

Project Period (FY) 2015-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsシンプレクティック幾何学 / フレアー理論 / シンプレクティック多様体 / ラグランジュ部分多様体 / モース理論 / フレアーホモロジー / モースホモロジー / 擬正則曲線 / Gromov収束 / 倉西構造
Outline of Final Research Achievements

This research studies the moduli spaces of stable maps in non-compact symplectic manifolds with concave end; the aim is to construct their Kuranishi structures. In particular, we focus on the following three related topics: (1) We observe sequences of pseudoholomorphic curves in the symplectizations of contact manifolds to describe the corners of Kuranishi structures of the moduli spaces of stable maps. (2) We study the details of bubbling off phenomena to understand the convergences of stable maps. (3) We may think some kind of Morse homology of manifolds with boundary as a toy model of Floer homology of Lagrangian submanifolds in non-compact symplectic manifolds with concave end. Towards A infinity algebras for some Lagrangian submanifolds in non-compact symplectic manifolds with concave end, we construct products on Morse homology of manifolds with boundary.

Academic Significance and Societal Importance of the Research Achievements

擬正則曲線はシンプレクティック多様体上のHamilton力学系やLagrange部分多様体の交叉などの様々な分野の研究に応用されている。従来の擬正則曲線の理論では閉シンプレクティク多様体や閉Lagrange部分多様体などの滑らかなものしか扱えなかったがLagrangeはめ込みや特異Lagrangeトーラス束など、応用上しばしば特異点を持つものが現れ、その際如何に擬正則曲線を用いるかが一つの問題となっている。本研究課題では特異点の補集合を想定して非コンパクトなシンプレクティック多様体における擬正則曲線の理論を研究している。これにより特異点が現れる場合に擬正則曲線の理論を適応することが可能となる。

Report

(6 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017 2016 2015 Other

All Presentation (8 results) (of which Int'l Joint Research: 4 results,  Invited: 8 results) Remarks (1 results) Funded Workshop (3 results)

  • [Presentation] Simplified proof of Gromov's theorem2018

    • Author(s)
      赤穂まなぶ
    • Organizer
      NCTS Symplectic Expedition: Floer theory and beyond, Kenting Young Activity Center
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] J-holomorphic curves in symplectic topology2018

    • Author(s)
      赤穂まなぶ
    • Organizer
      第13回代数・解析・幾何学セミナー
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Symplectic displacement energy for exact Lagrangian immersions2016

    • Author(s)
      Manabu Akaho
    • Organizer
      International Conference for the 70th Anniversary of Korean Mathematical Society 2016 KMS Annual Meeting
    • Place of Presentation
      Seoul National University
    • Year and Date
      2016-10-20
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Symplectic displacement energy for exact Lagrangian immersions2016

    • Author(s)
      Manabu Akaho
    • Organizer
      Workshop on Symplectic Geometry and Physics
    • Place of Presentation
      東北大学
    • Year and Date
      2016-05-23
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to bounding cochains of filtered A-infinity algebras2016

    • Author(s)
      赤穂まなぶ
    • Organizer
      微分トポロジー16
    • Place of Presentation
      筑波大学
    • Year and Date
      2016-03-20
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Symplectic displacement energy for exact Lagrangian immersions2015

    • Author(s)
      赤穂まなぶ
    • Organizer
      Mirror Symmetry and Algebraic Geometry 2015
    • Place of Presentation
      京都大学
    • Year and Date
      2015-12-07
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Introduction to immersed Lagrangian Floer theory I, II2015

    • Author(s)
      赤穂まなぶ
    • Organizer
      geometry seminar
    • Place of Presentation
      北京師範大学
    • Year and Date
      2015-08-25
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Symplectic displacement energy for exact Lagrangian immersions2015

    • Author(s)
      赤穂まなぶ
    • Organizer
      トポロジー火曜セミナー
    • Place of Presentation
      東京大学
    • Year and Date
      2015-06-09
    • Related Report
      2015 Research-status Report
    • Invited
  • [Remarks] East Asian Symplectic Conference 2015 in HONG KONG

    • URL

      http://www.comp.tmu.ac.jp/pseudoholomorphic/EASC2015.html

    • Related Report
      2015 Research-status Report
  • [Funded Workshop] East Asian Symplectic Conference 2019 in PENGHU2019

    • Related Report
      2019 Annual Research Report
  • [Funded Workshop] East Asian Symplectic Conference 2017 in CHENGDU2017

    • Related Report
      2017 Research-status Report
  • [Funded Workshop] East Asian Symplectic Conference 20152015

    • Place of Presentation
      The Chinese University of Hong Kong
    • Year and Date
      2015-11-02
    • Related Report
      2015 Research-status Report

URL: 

Published: 2015-04-16   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi