• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Convexity of complete Finsler Manifolds

Research Project

Project/Area Number 15K04864
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionFukuoka Institute of Technology

Principal Investigator

SHIOHAMA Katsuhiro  福岡工業大学, 付置研究所, 研究員 (20016059)

Co-Investigator(Kenkyū-buntansha) 永野 哲也  長崎県立大学, 情報システム学部, 教授 (00259699)
糸川 銚  福岡工業大学, 情報工学部, 教授 (90223205)
Project Period (FY) 2015-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2015: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsフィンスラー多様体 / 測地線 / 切断跡 / 共役跡 / 凸性 / 非対称距離構造 / 指数写像 / 非対称距離関数 / 凸性と凸関数 / ランダース計量 / フィンスラー幾何学 / 凸関数と凸集合
Outline of Final Research Achievements

The notion of convexity is very important in the study of natural science including mathematics and engineering. Finsler manifolds are considered as a natural extension of Riemannian manifolds. In particular, Finsler manifolds admit non-symmetric metric structure. This point is important for our investigation. The behavior of geodesics on Finsler manifolds is completely different from those of Riemannian manifolds. This is because of the property of the fundamental function.
We have investigated the strucure of cut loci and conjugate loci on Finsler manifolds. In particular, the convexity of Finsler manifolds is one of the main them of our investigation. Through our investigation, we have discovered new phenomena on the behavior of geodesics on Finsler manifolds, which have never seen on Riemannian world. Our main results have been in public from Pacific J. Math., Trans. Amer. Math. Soc., Math. Debrecen, Manuscripta Math.

Academic Significance and Societal Importance of the Research Achievements

従来のリーマン幾何学では捉える事が出来なかった非対称距離構造の研究はフィンスラー幾何学の特徴を示している.フィンスラー多様体上の2点間の距離が往路と復路では異なると言う点において,フィンスラー幾何学は現実の社会に即していると考えられる.特に,測地線の大域的挙動を調べる事が重要な研究課題となる.測地線の大域的研究に重要な役割を果たす切断跡,共役跡に関する基本的な性質をフィンスラー多様体上で研究した.研究成果は米国,ドイツ,印度,ハンガリー等の学術雑誌から発表されている.従って,今後の研究の指針がこれらの成果から示され各国でフィンスラー幾何学の研究が進むであろう.

Report

(4 results)
  • 2018 Final Research Report ( PDF )
  • 2017 Annual Research Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (13 results)

All 2017 2016 2015

All Journal Article (8 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 7 results,  Acknowledgement Compliant: 2 results) Presentation (5 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results)

  • [Journal Article] Parallel Axiom and the Second Order Differentiability of Busemann Functions2017

    • Author(s)
      N.Innami--Y.Itokawa--T.Nagano--K.Shiohama
    • Journal Title

      Publ. Math. Debrecen

      Volume: 91

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Parallel axiom and the second order differentiability of Busemann functions2017

    • Author(s)
      N.Innami--Y.Itokawa--T.Nagano--K.Shiohama
    • Journal Title

      Publ. Math. Debrecen, Hungary

      Volume: 印刷中

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Strictly convex functions on complete Finsler manifolds2016

    • Author(s)
      Y.Itokawa-K.Shiohama-B.Tiwari
    • Journal Title

      Proc. Indian Acad. Sci. (Math. Sci.)

      Volume: 126 Issue: 4 Pages: 623-627

    • DOI

      10.1007/s12044-016-0307-2

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Geodesics in a Finsler surface with one-parameter group of motions2016

    • Author(s)
      N.Innami--T.Nagano--K.Shiohama
    • Journal Title

      Publ. Math. Debrecen, Hungary

      Volume: 89 Issue: 1-2 Pages: 137-160

    • DOI

      10.5486/pmd.2016.7442

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Strictly convex functions on complete Finsler manifolds2016

    • Author(s)
      Y.Itokawa, K.Shiohama and Bankteshwar Tiwari
    • Journal Title

      Proceedings of Mathematical Sciences, Indian Academy of Sciences

      Volume: to appear

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Geodesics in a Finsler surface with one parameter group of motions2016

    • Author(s)
      N.Innami, T.Nagano and K.Shiohama
    • Journal Title

      Publications Mathematics Debrecen

      Volume: to appear

    • Related Report
      2015 Research-status Report
  • [Journal Article] The cut locus and Voronoi diagram of a finite set of points in a surface2015

    • Author(s)
      N.Innami, K.Shiohama and Y.Uneme
    • Journal Title

      Manuscripta Mathematicae

      Volume: 148

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Journal Article] Topology of complete Finsler manifolds admitting convex functions2015

    • Author(s)
      S.Sabau and K.Shiohama
    • Journal Title

      Pacific Journal of Mathematics

      Volume: 276

    • Related Report
      2015 Research-status Report
    • Peer Reviewed
  • [Presentation] Pointed Blaschke Finsler manifolds2016

    • Author(s)
      塩濱勝博
    • Organizer
      第51回フィンスラー幾何学シンポジウム
    • Place of Presentation
      鹿児島県自治会館
    • Year and Date
      2016-11-17
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Global Behavior of Geodesics on Finsler Tori of Revolution2016

    • Author(s)
      K.Shiohama
    • Organizer
      Colloquium talk
    • Place of Presentation
      Bhaskaracharya Pratishthana Institute of Mathematics
    • Year and Date
      2016-02-12
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Convex Sets and Convex Functions2016

    • Author(s)
      k.Shiohama
    • Organizer
      Colloquium talk
    • Place of Presentation
      Savitribal Phule Pune University
    • Year and Date
      2016-02-11
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] The Rauch Conjecture and Poles of Complete Finsler Manifolds2016

    • Author(s)
      K.Shiohama
    • Organizer
      International Conference on Differential Geometry, Analysis and Fluid Dynamics
    • Place of Presentation
      Kuvempu University
    • Year and Date
      2016-02-04
    • Related Report
      2015 Research-status Report
    • Invited
  • [Presentation] Blaschke Finsler Manifolds2016

    • Author(s)
      K.Shiohama
    • Organizer
      Colloquium talk
    • Place of Presentation
      Tata Institute of Fundamental Reearch
    • Year and Date
      2016-02-02
    • Related Report
      2015 Research-status Report
    • Invited

URL: 

Published: 2015-04-16   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi