• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Inifinitary generated objects(Algebraic topology of wild spaces)

Research Project

Project/Area Number 15K04882
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionWaseda University

Principal Investigator

Eda Katsuya  早稲田大学, 理工学術院, 名誉教授 (90015826)

Project Period (FY) 2015-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2015: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
KeywordsFundamental groups / wild algebraic topology / one dimensional space / infinitary words / singular homology / 基本群 / 特異ホモロジー群 / アーベル化 / 既約懸垂 / 野生化 / 野生的空間 / 位相群 / アーベル群 / one dimensional / wild space / reduced suspension / 非可算非可換群 / covering group / Hawaiian Earring / reflection group / locally finite graph / fundamental group / one dimesional / zero dimensional / Peano continua / one dimension / zero dimension / locally finite / graph / Coxeter group / 野性的空間 / 1次元 / 2次元 / cech homology / grope group
Outline of Final Research Achievements

1.Cortorsionfree abelian groups are defined by the countable direct product of integer group. As non-commutative version of this we define groups using the Hawaiian earring group. Then, for abelian groups this new notion coincides with the cotorsionfreeness.
2.If there exists an overlay over a locally compact group, then the total space becomes a topological group and the overlay map becomes a topological homomorphism.
3.Suppose that the wild parts of one-dimensional Peano continua are non-empty and 0-dimensional. If the wild parts of the spaces are homeomorphic, then the spaces are homotopy equivalent. Conversely, if the spaces are homotopy equivalent, their wild parts are homeomorphic. Any one-dimensional Peano continuum X there exists a locally finite connected graph such that the space with its ends realizes X. Conversely the space of locally finite connected graph is a one-dimensional Peano continuum with 0-dimensional wild part.

Academic Significance and Societal Importance of the Research Achievements

代数的トポロジーの対象は従来、局所的によい空間に関するものであった、そのため非可算濃度をもつ群あるいはその性質が問題となることはなかった。研究代表者は1990年ころから野生的空間の基本群、特異ホモロジーの研究を始めた。今回の7年に渡る研究は、その大きな区切りであり、今後の Wild Algebraic Topology といわれる分野の確立である。これは、Infinite Abelian group でなされた非可算群の理論の新しい応用であり、またこれまでほぼなされていなかった非可換非可算群の研究とも考えられる。J. Brazas のホームページ Wild Topology に詳しい。

Report

(9 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • 2015 Research-status Report
  • Research Products

    (10 results)

All 2022 2021 2020 2018 2017 2016 2015

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Acknowledgement Compliant: 1 results) Presentation (5 results) (of which Int'l Joint Research: 3 results,  Invited: 3 results)

  • [Journal Article] One dimensional Peano continua with 0-dimwnsional wild part2022

    • Author(s)
      K. Eda
    • Journal Title

      Fund. Math.

      Volume: 259 Pages: 243-253

    • Related Report
      2022 Annual Research Report
    • Peer Reviewed
  • [Journal Article] One dimensional Peano continua with 0-dimensional wild partpart2022

    • Author(s)
      Katsuya Eda
    • Journal Title

      Fund. Math.

      Volume: -

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] Making spaces wild2021

    • Author(s)
      Katsuya Eda
    • Journal Title

      Topology and its applications

      Volume: 288 Pages: 107483-107483

    • DOI

      10.1016/j.topol.2020.107483

    • Related Report
      2021 Research-status Report 2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] From uncountable abelian groups to uncountable non-abelian groups2020

    • Author(s)
      Katsuya Eda
    • Journal Title

      Rend. Sem. Mate. Univ. Padova

      Volume: 144 Pages: 105-114

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Singular homology of one-dimensional Peano continua2016

    • Author(s)
      Katsuya Eda
    • Journal Title

      Fund.umenta Mathematicae

      Volume: 23 Pages: 99-115

    • Related Report
      2015 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] End付局所有限グラフの基本群2020

    • Author(s)
      江田勝哉
    • Organizer
      一般位相幾何学とその関連分野の進展
    • Related Report
      2020 Research-status Report
  • [Presentation] The Specker theorem and non-commutative duality2018

    • Author(s)
      Katsuya Eda
    • Organizer
      Arches Topology Conference
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Future of one-dimensional wild algebraic topology2017

    • Author(s)
      Katsuya Eda
    • Organizer
      2nd Pan Pacific International conference of Topology and its applications
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Compactifications of graphs and fundamental groups2016

    • Author(s)
      Katsuya Eda
    • Organizer
      集合論的、幾何学的トポロジーとその応用
    • Place of Presentation
      京都数理解析研究所
    • Related Report
      2016 Research-status Report
  • [Presentation] Algebraic topology of one dimensional spaces2015

    • Author(s)
      Katsuya Eda
    • Organizer
      1st pan pacific international conference on Topology and its application
    • Place of Presentation
      Zhangzhou
    • Year and Date
      2015-11-27
    • Related Report
      2015 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2015-04-16   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi